We study the quantum-classical polynomial hierarchy, QCPH, which is the class of languages solvable by a constant number of alternating classical quantifiers followed by a quantum verifier. Our main result is that QCPH is infinite relative to a random oracle (previously, this was not even known relative to any oracle). We further prove that higher levels of PH are not contained in lower levels of QCPH relative to a random oracle; this is a strengthening of the somewhat recent result that PH is infinite relative to a random oracle (Rossman, Servedio, and Tan 2016). The oracle separation requires lower bounding a certain type of low-depth alternating circuit with some quantum gates. To establish this, we give a new switching lemma for quantum algorithms which may be of independent interest. Our lemma says that for any $d$, if we apply a random restriction to a function $f$ with quantum query complexity $\mathrm{Q}(f)\le n^{1/3}$, the restricted function becomes exponentially close (in terms of $d$) to a depth-$d$ decision tree. Our switching lemma works even in a "worst-case" sense, in that only the indices to be restricted are random; the values they are restricted to are chosen adversarially. Moreover, the switching lemma also works for polynomial degree in place of quantum query complexity.


翻译:我们研究量子-经典多项式层级(QCPH),即由常数个交替的经典量词后接一个量子验证器所解决的语言类。我们的主要结果表明,相对于随机预言机,QCPH是无限的(此前,甚至相对于任何预言机都未得知这一结论)。我们进一步证明,相对于随机预言机,PH的更高层级不包含于QCPH的较低层级;这是对近期结果(Rossman、Servedio和Tan,2016)——即PH相对于随机预言机是无限的——的强化。该预言机分离需要下界估计一种包含某些量子门的低深度交替电路。为此,我们提出了一种新的量子算法切换引理,这可能具有独立的研究价值。我们的引理表明,对于任意$d$,若对具有量子查询复杂度$\mathrm{Q}(f)\le n^{1/3}$的函数$f$施加随机限制,受限函数将以指数速度(关于$d$)逼近深度为$d$的决策树。我们的切换引理甚至在“最坏情况”意义下成立,即仅被限制的索引是随机的;而限制所赋予的值由对抗方选择。此外,该切换引理同样适用于以多项式次数替代量子查询复杂度的情形。

0
下载
关闭预览

相关内容

【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
22+阅读 · 2021年10月8日
专知会员服务
50+阅读 · 2021年6月2日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
22+阅读 · 2021年10月8日
专知会员服务
50+阅读 · 2021年6月2日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员