Parametric body models provide the structural basis for many human-centric tasks, yet existing models often rely on costly 3D scans and learned shape spaces that are proprietary and demographically narrow. We introduce Anny, a simple, fully differentiable, and scan-free human body model grounded in anthropometric knowledge from the MakeHuman community. Anny defines a continuous, interpretable shape space, where phenotype parameters (e.g. gender, age, height, weight) control blendshapes spanning a wide range of human forms--across ages (from infants to elders), body types, and proportions. Calibrated using WHO population statistics, it provides realistic and demographically grounded human shape variation within a single unified model. Thanks to its openness and semantic control, Anny serves as a versatile foundation for 3D human modeling--supporting millimeter-accurate scan fitting, controlled synthetic data generation, and Human Mesh Recovery (HMR). We further introduce Anny-One, a collection of 800k photorealistic images generated with Anny, showing that despite its simplicity, HMR models trained with Anny can match the performance of those trained with scan-based body models. The Anny body model and its code are released under the Apache 2.0 license, making Anny an accessible foundation for human-centric 3D modeling.
翻译:参数化人体模型为许多以人为中心的任务提供了结构基础,然而现有模型通常依赖于昂贵的3D扫描数据以及专有、人口学覆盖范围狭窄的学习形状空间。我们提出了Anny,一个基于MakeHuman社区人体测量学知识的、简单、完全可微分且无需扫描的人体模型。Anny定义了一个连续、可解释的形状空间,其中表型参数(例如性别、年龄、身高、体重)控制着跨越广泛人体形态——涵盖不同年龄段(从婴儿到老人)、体型和比例——的混合形状。该模型使用世界卫生组织的人口统计数据校准,在单一统一模型中提供了真实且基于人口学统计的人体形状变化。得益于其开放性和语义控制能力,Anny可作为3D人体建模的多功能基础——支持毫米级精度的扫描拟合、可控的合成数据生成以及人体网格恢复(HMR)。我们进一步推出了Anny-One,一个使用Anny生成的包含80万张逼真图像的集合,结果表明,尽管Anny模型结构简单,但使用其训练的HMR模型在性能上可与基于扫描数据训练的人体模型相媲美。Anny人体模型及其代码以Apache 2.0许可证发布,使Anny成为可广泛获取的、以人为中心的3D建模基础。