In this article we propose a holistic approach to discover relations in art historical communities and enrich historians' biographies and archival descriptions with graph patterns relevant to art historiographic enquiry. We use exploratory data analysis to detect patterns, we select features, and we use them to evaluate classification models to predict new relations, to be recommended to archivists during the cataloguing phase. Results show that relations based on biographical information can be addressed with higher precision than relations based on research topics or institutional relations. Deterministic and a priori rules present better results than probabilistic methods.
翻译:在文章中,我们提出一个全面的方法来发现艺术历史界的关系,并丰富历史学家的传记和档案描述,用与艺术历史调查有关的图表模式来丰富历史学家的传记和档案描述。我们使用探索性数据分析来探测模式,我们选择特征,我们用这些数据来评价分类模型来预测新的关系,在编目阶段向档案管理员推荐。结果显示,基于传记信息的关系可以比基于研究课题或机构关系的关系更精确地处理。确定性和先验性规则比概率方法产生更好的结果。