Sensor-equipped beehives allow monitoring the living conditions of bees. Machine learning models can use the data of such hives to learn behavioral patterns and find anomalous events. One type of event that is of particular interest to apiarists for economical reasons is bee swarming. Other events of interest are behavioral anomalies from illness and technical anomalies, e.g. sensor failure. Beekeepers can be supported by suitable machine learning models which can detect these events. In this paper we compare multiple machine learning models for anomaly detection and evaluate them for their applicability in the context of beehives. Namely we employed Deep Recurrent Autoencoder, Elliptic Envelope, Isolation Forest, Local Outlier Factor and One-Class SVM. Through evaluation with real world datasets of different hives and with different sensor setups we find that the autoencoder is the best multi-purpose anomaly detector in comparison.
翻译:带有传感器的蜂巢能够监测蜜蜂的生活条件。 机器学习模型可以使用这些蜂巢的数据来学习行为模式和发现异常事件。 一种对飞蜂家特别感兴趣的事件是蜂群的繁殖。 其他感兴趣的事件是疾病和技术异常造成的行为异常,例如传感器故障。 养蜂人可以得到能够检测这些事件的适当机器学习模型的支持。 在本文中,我们比较了多个机器学习模型以探测异常现象,并评估了它们在蜂窝中的可应用性。 也就是说,我们使用了深常数自动coder、 Elliptic Invelope、隔离森林、本地外源和一格SVM。 通过对不同蜂窝真实世界数据集和不同传感器设置的评估,我们发现自动编码是最佳的多功能异常探测器。