The automatic assignment of a severity score to the CT scans of patients affected by COVID-19 pneumonia could reduce the workload in radiology departments. This study aims at exploiting Artificial intelligence (AI) for the identification, segmentation and quantification of COVID-19 pulmonary lesions. We investigated the effects of using multiple datasets, heterogeneously populated and annotated according to different criteria. We developed an automated analysis pipeline, the LungQuant system, based on a cascade of two U-nets. The first one (U-net_1) is devoted to the identification of the lung parenchyma, the second one (U-net_2) acts on a bounding box enclosing the segmented lungs to identify the areas affected by COVID-19 lesions. Different public datasets were used to train the U-nets and to evaluate their segmentation performances, which have been quantified in terms of the Dice index. The accuracy in predicting the CT-Severity Score (CT-SS) of the LungQuant system has been also evaluated. Both Dice and accuracy showed a dependency on the quality of annotations of the available data samples. On an independent and publicly available benchmark dataset, the Dice values measured between the masks predicted by LungQuant system and the reference ones were 0.95$\pm$0.01 and 0.66$\pm$0.13 for the segmentation of lungs and COVID-19 lesions, respectively. The accuracy of 90% in the identification of the CT-SS on this benchmark dataset was achieved. We analysed the impact of using data samples with different annotation criteria in training an AI-based quantification system for pulmonary involvement in COVID-19 pneumonia. In terms of the Dice index, the U-net segmentation quality strongly depends on the quality of the lesion annotations. Nevertheless, the CT-SS can be accurately predicted on independent validation sets, demonstrating the satisfactory generalization ability of the LungQuant.


翻译:对受COVID-19肺炎影响的病人进行CT扫描,自动分配重度分数,可以减少放射部门的工作量。这项研究旨在利用人工智能(AI)来识别、分解和量化COVID-19肺损伤。我们根据不同的标准调查了使用多数据集、人口多样性和附加说明的影响。我们开发了一个自动分析管道,即以两个U-net的级联为基础的肺决量系统。第一个系统(U-net_1)专门用于识别肺炎;第二个系统(U-net_2)用于识别肺炎;第二个系统(U-net_2)在连接部分肺部以识别、分解和量化COVI-19肺损伤的区域的捆绑盒上的行为。我们用不同的公共数据集来培训U-net,并评价其分解性功能。我们开发了一个自动分析管道,以两个U-D-D-Nationality为主的基值预测C-美元数值(CT-SS)的准确度。这个系统对肺-肝脏xxxxxxx值的数值值进行了评估。D-lixxxxal-al-al-dealal-dealalalalalation 数据记录显示了现有数据库数据库数据记录中的数据和数据记录。我们测量和已测量数据记录中的现有数据记录数据记录数据记录数据记录数据记录数据记录数据记录数据记录数据记录数据记录数据记录。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
166+阅读 · 2020年4月26日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
已删除
将门创投
5+阅读 · 2017年11月20日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
已删除
将门创投
5+阅读 · 2017年11月20日
Top
微信扫码咨询专知VIP会员