Surgical phase recognition is a fundamental task in computer-assisted surgery systems. Most existing works require expensive frame-wise annotations, which is very time-consuming. In this paper, we introduce timestamp supervision to surgical phase recognition for the first time, which only requires randomly labeling one frame for each phase in a video. With timestamp supervision, current methods in natural videos aim to generate pseudo labels of full frames. However, due to the surgical videos containing ambiguous boundaries, these methods would generate many noisy and inconsistent pseudo labels, leading to limited performance. We argue that less is more in surgical phase recognition,~\ie, less but discriminative pseudo labels outperform full but ambiguous frames. To this end, we propose a novel method called uncertainty-aware temporal diffusion to generate trustworthy pseudo labels. Our approach evaluates the confidence of generated pseudo labels based on uncertainty estimation. Then, we treat the annotated frames as anchors and make pseudo labels diffuse to both sides, starting from anchors and stopping at the high-uncertainty frames. In this way, our proposed method can generate contiguous confident pseudo labels while discarding the uncertain ones. Extensive experiments demonstrate that our method not only significantly save annotation cost, but also outperforms fully supervised methods. Moreover, our proposed approach can be used to clean noisy labels near boundaries and improve the performance of the current surgical phase recognition methods.


翻译:外科阶段识别是计算机辅助外科手术系统的一项基本任务。 大部分现有工程都需要昂贵的框架背景说明, 这非常耗时。 在本文中, 我们首次引入了手术阶段识别的时间戳监督, 第一次只需要随机在视频中为每个阶段贴上一个框架标签。 使用时间戳监督, 自然视频中目前的方法旨在生成假的全框标签。 但是, 由于包含模糊界限的外科视频, 这些方法将产生许多噪音和不一致的假标签, 导致性能有限。 我们争论说, 在外科阶段识别方面, 更少的是, ⁇ ie, 较少但歧视性的假标签比完整但模糊的框架要少。 为此, 我们提出一种新的方法, 叫做不确定性的暂时扩散, 以生成可靠的假标签。 我们的方法根据不确定性估计来评估伪标签的信心。 然后, 我们把这些附加说明的框作为锚和假标签向两边传播, 从锚开始, 停止高不确定性的框框。 我们提议的方法只能产生连结的假标签, 而不是在接近当前外科性标之前, 彻底的升级的试验 。

0
下载
关闭预览

相关内容

LESS 是一个开源的样式语言,受到 Sass 的影响。严格来说,LESS 是一个嵌套的元语言,符合语法规范的 CSS 语句也是符合规范的 Less 代码。
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
1+阅读 · 2022年4月19日
Phase-aware Speech Enhancement with Deep Complex U-Net
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员