In this paper we study the problem of recovering a tensor network decomposition of a given tensor $\mathcal{T}$ in which the tensors at the vertices of the network are orthogonally decomposable. Specifically, we consider tensor networks in the form of tensor trains (aka matrix product states). When the tensor train has length 2, and the orthogonally decomposable tensors at the two vertices of the network are symmetric, we show how to recover the decomposition by considering random linear combinations of slices. Furthermore, if the tensors at the vertices are symmetric but not orthogonally decomposable, we show that a whitening procedure can transform the problem into an orthogonal one, thereby yielding a solution for the decomposition of the tensor. When the tensor network has length 3 or more and the tensors at the vertices are symmetric and orthogonally decomposable, we provide an algorithm for recovering them subject to some rank conditions. Finally, in the case of tensor trains of length two in which the tensors at the vertices are orthogonally decomposable but not necessarily symmetric, we show that the decomposition problem reduces to the problem of a novel matrix decomposition, that of an orthogonal matrix multiplied by diagonal matrices on either side. We provide two solutions for the full-rank tensor case using Sinkhorn's theorem and Procrustes' algorithm, respectively, and show that the Procrustes-based solution can be generalized to any rank case. We conclude with a multitude of open problems in linear and multilinear algebra that arose in our study.


翻译:在本文中,我们研究如何恢复给定的 Exronor $\ mathcal{T} $ 的抗拉网络分解问题, 在这种分解中, 网络的顶部的抗拉是可分解的。 具体地说, 我们考虑的是, 高压列( 挂牌产品产物状态) 形式的抗拉网络。 当高压列的长度为2, 网络的两个顶部的可分解的抗拉是对称的, 我们通过考虑切片随机线性组合来恢复变异的。 此外, 如果顶部的抗拉是可分解的, 但不会分解的。 我们发现, 白化的过程可以把问题变成一个或直角列列列列列列列列列列列列( 例中, 蒸发式网络的3年长或以上) 的可分解的抗拉动的抗拉动。 当电压的螺旋质变压的直压质和分解的分解质质, 我们提供了一种侧算法, 在两部的变压的变压的解的变压中, 最后, 的解变变变变变变变的变的变变的变的变的变的变变的变的变的变的体,, 变变变变变变的变的变的变的变变变变的变变的变的变的变的变的变的变的变的变的变的变的变的变的变的变体, 变体, 变的变的变体, 变的变变的变变变变变变变变变变的变变变变的变的变的变的变变变的变的变的变的变的变的变的变的变的变的变的变的变的变变变变变变变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变变的变的变的变的变的变变变变变变变变变的变的变的变的变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
49篇ICLR2020高分「图机器学习GML」接受论文及代码
专知会员服务
61+阅读 · 2020年1月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
创业邦杂志
5+阅读 · 2019年3月27日
Arxiv
0+阅读 · 2020年11月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
创业邦杂志
5+阅读 · 2019年3月27日
Top
微信扫码咨询专知VIP会员