We study the computational complexity of computing solutions for the straight-cut and square-cut pizza sharing problems. We show that finding an approximate solution is PPA-hard for the straight-cut problem, and PPA-complete for the square-cut problem, while finding an exact solution for the square-cut problem is FIXP-hard and in BU. Our PPA-hardness results apply even when all mass distributions are unions of non-overlapping squares, and our FIXP-hardness result applies even when all mass distributions are unions of weighted squares and right-angled triangles. We also show that decision variants of the square-cut problem are hard: we show that the approximate problem is NP-complete, and the exact problem is ETR-complete.
翻译:我们研究了直切和平切比萨共享问题的计算解决方案的计算复杂性。 我们发现,找到近似解决方案是直切问题的PPA硬方块,而平切问题PPA完全完成,同时找到正切问题的确切解决方案是FIXP硬方块和BU。 我们的PPA硬度结果适用,即使所有质量分布都是非重叠方块的联盟,即使所有质量分布都是加权方块和右缠三角块的结合,我们FIXP的硬度结果也适用。 我们还显示,平切问题的决策变量是困难的:我们显示,近似问题是NP的,而确切的问题就是ETR的完整。