While thinking aloud has been reported to positively affect problem-solving, the effects of the presence of an embodied entity (e.g., a social robot) to whom words can be directed remain mostly unexplored. In this work, we investigated the role of a robot in a "rubber duck debugging" setting, by analyzing how a robot's listening behaviors could support a thinking-aloud problem-solving session. Participants completed two different tasks while speaking their thoughts aloud to either a robot or an inanimate object (a giant rubber duck). We implemented and tested two types of listener behavior in the robot: a rule-based heuristic and a deep-learning-based model. In a between-subject user study with 101 participants, we evaluated how the presence of a robot affected users' engagement in thinking aloud, behavior during the task, and self-reported user experience. In addition, we explored the impact of the two robot listening behaviors on those measures. In contrast to prior work, our results indicate that neither the rule-based heuristic nor the deep learning robot conditions improved performance or perception of the task, compared to an inanimate object. We discuss potential explanations and shed light on the feasibility of designing social robots as assistive tools in thinking-aloud problem-solving tasks.


翻译:虽然有人报告说,有人大声疾呼,对解决问题产生了积极的影响,但一个有代表性的实体(如社会机器人)的存在,其言词可以向它发出,其影响在很大程度上仍未得到探讨。在这项工作中,我们调查了机器人在“灌木鸭除虫”环境中的作用,分析机器人的监听行为如何支持解决思考问题的会议。与会者在对机器人或无生命物体(巨型橡胶鸭)大声疾呼时完成了两项不同的任务。我们在机器人中实施和测试了两类听众行为:一种基于规则的超光速和深层次学习模式。在对101名参与者进行的主题间用户研究中,我们评估了机器人的存在如何影响用户对高声思考、任务期间的行为以及自我报告用户的经验。此外,我们探讨了两个机器人的监听行为对这些措施的影响。与以前的工作相比,我们的结果表明,基于规则的超常或深层学习的机器人状况都没有改善工作表现或任务感知力,与设计无生命的机器人工具相比,我们评估了机器人对如何思考问题的潜在可能性。我们讨论了如何思考问题。我们讨论了如何解释,作为机器人工具的可行性。

0
下载
关闭预览

相关内容

机器人(英语:Robot)包括一切模拟人类行为或思想与模拟其他生物的机械(如机器狗,机器猫等)。狭义上对机器人的定义还有很多分类法及争议,有些电脑程序甚至也被称为机器人。在当代工业中,机器人指能自动运行任务的人造机器设备,用以取代或协助人类工作,一般会是机电设备,由计算机程序或是电子电路控制。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月10日
Arxiv
46+阅读 · 2021年10月4日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员