This paper studies nonparametric identification and estimation of causal effects in centralized school assignment. In many centralized assignment algorithms, students face both lottery-driven variation and regression discontinuity- (RD) driven variation. We characterize the full set of identified atomic treatment effects (aTEs), defined as the conditional average treatment effect between a pair of schools given student characteristics. Atomic treatment effects are the building blocks of more aggregated treatment contrasts, and common approaches to estimating aTE aggregations can mask important heterogeneity. In particular, many aggregations of aTEs put zero weight on aTEs driven by RD variation, and estimators of such aggregations put asymptotically vanishing weight on the RD-driven aTEs. We provide a diagnostic and recommend new aggregation schemes. Lastly, we provide estimators and asymptotic results for inference on these aggregations.


翻译:本文研究了集中式学校分配中因果效应的非参数化识别与估计。在许多集中式分配算法中,学生既面临彩票驱动的变异,也面临断点回归驱动的变异。我们刻画了所有已识别的原子处理效应的完整集合,该集合定义为给定学生特征下成对学校间的条件平均处理效应。原子处理效应是更聚合处理对比的基础构件,而估计原子处理效应聚合的常见方法可能掩盖重要的异质性。特别地,许多原子处理效应的聚合对断点回归驱动的原子处理效应赋予零权重,而此类聚合的估计量对断点回归驱动的原子处理效应赋予渐近消失的权重。我们提供了一种诊断方法并推荐了新的聚合方案。最后,我们为这些聚合的推断提供了估计量及渐近结果。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2020年10月2日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员