There is substantial variability in the expectations that communication partners bring into interactions, creating the potential for misunderstandings. To directly probe these gaps and our ability to overcome them, we propose a communication task based on color-concept associations. In Experiment 1, we establish several key properties of the mental representations of these expectations, or \emph{lexical priors}, based on recent probabilistic theories. Associations are more variable for abstract concepts, variability is represented as uncertainty within each individual, and uncertainty enables accurate predictions about whether others are likely to share the same association. In Experiment 2, we then examine the downstream consequences of these representations for communication. Accuracy is initially low when communicating about concepts with more variable associations, but rapidly increases as participants form ad hoc conventions. Together, our findings suggest that people cope with variability by maintaining well-calibrated uncertainty about their partner and appropriately adaptable representations of their own.


翻译:通信伙伴带来互动的预期差异很大, 从而产生误解的可能性。 为了直接探究这些差距和我们克服这些差距的能力, 我们提议了基于肤色观念协会的沟通任务。 在实验1中, 我们根据最近的概率理论, 确定了这些期望心理表现的若干关键属性, 即 /emph{lexical passions} 。 协会对于抽象概念来说比较不同, 差异在每个人内部代表着不确定性, 不确定性使得可以准确预测其他人是否可能拥有相同的联系。 在实验2中, 我们随后研究了这些表达方式的下游影响。 当与更多变异协会交流概念时, 准确性最初很低, 但随着参与者组成临时公约而迅速增加。 我们的研究结果共同表明,人们通过保持对伴侣的高度不确定性和适当的适应性表现来应对变异性。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【AAAI2021】 层次图胶囊网络
专知会员服务
84+阅读 · 2020年12月18日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
23+阅读 · 2020年1月28日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
4+阅读 · 2018年6月12日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Arxiv
0+阅读 · 2021年7月7日
Arxiv
0+阅读 · 2021年7月4日
Arxiv
6+阅读 · 2018年2月28日
VIP会员
相关VIP内容
【AAAI2021】 层次图胶囊网络
专知会员服务
84+阅读 · 2020年12月18日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
23+阅读 · 2020年1月28日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
4+阅读 · 2018年6月12日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Top
微信扫码咨询专知VIP会员