The Maximum Mean Discrepancy (MMD) has been the state-of-the-art nonparametric test for tackling the two-sample problem. Its statistic is given by the difference in expectations of the witness function, a real-valued function defined as a weighted sum of kernel evaluations on a set of basis points. Typically the kernel is optimized on a training set, and hypothesis testing is performed on a separate test set to avoid overfitting (i.e., control type-I error). That is, the test set is used to simultaneously estimate the expectations and define the basis points, while the training set only serves to select the kernel and is discarded. In this work, we argue that this data splitting scheme is overly conservative, and propose to use the training data to also define the weights and the basis points for better data efficiency. We show that 1) the new test is consistent and has a well-controlled type-I error; 2) the optimal witness function is given by a precision-weighted mean in the reproducing kernel Hilbert space associated with the kernel, and is closely related to kernel Fisher discriminant analysis; and 3) the test power of the proposed test is comparable or exceeds that of the MMD and other modern tests, as verified empirically on challenging synthetic and real problems (e.g., Higgs data).


翻译:最大平均值差异(MMD)是处理两样样本问题的最先进的非参数性测试,其统计数据来自对证人功能的预期差异,即根据一组基点对内核评价的加权总和进行实际估价的功能。典型地,内核在一组培训中最优化,假设测试在一套单独的测试中进行,以避免过度匹配(即控制类型I错误)。这就是,测试集用于同时估计期望和界定基点,而培训集仅用于选择内核并被丢弃。在这项工作中,我们争辩说,这一数据分割计划过于保守,并提议使用培训数据来界定加权和基点,以提高数据效率。我们表明,1 新测试是一致的,并且有严格控制的型号I错误;2 最佳的证人功能是用一个精确的加权平均值来估计与内核相关的希尔伯特空间,而培训集只用来选择内核,而只用来选择内核,并被丢弃。我们的论点是,这种数据分割计划过于保守,并提议使用培训数据数据数据来界定重量和基点,以便提高数据效率。 我们表明,1,新测试是一致的,并有受控制的型号内核空间空间空间,并且与模拟测试的其他测试和模拟分析密切相关。

0
下载
关闭预览

相关内容

系列教程GNN-algorithms之七:《图同构网络—GIN》
专知会员服务
47+阅读 · 2020年8月9日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
106+阅读 · 2020年6月10日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
10+阅读 · 2019年3月6日
Arxiv
0+阅读 · 2021年7月29日
Arxiv
6+阅读 · 2018年11月29日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关VIP内容
系列教程GNN-algorithms之七:《图同构网络—GIN》
专知会员服务
47+阅读 · 2020年8月9日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
106+阅读 · 2020年6月10日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
10+阅读 · 2019年3月6日
Top
微信扫码咨询专知VIP会员