Context: Predicting software project effort from Use Case Points (UCP) method is increasingly used among researchers and practitioners. However, unlike other effort estimation domains, this area of interest has not been systematically reviewed. Aims: There is a need for a systemic literature review to provide directions and supports for this research area of effort estimation. Specifically, the objective of this study is twofold: to classify UCP effort estimation papers based on four criteria: contribution type, research approach, dataset type and techniques used with UCP; and to analyze these papers from different views: estimation accuracy, favorable estimation context and impact of combined techniques on the accuracy of UCP. Method: We used the systematic literature review methodology proposed by Kitchenham and Charters. This includes searching for the most relevant papers, selecting quality papers, extracting data and drawing results. Result: The authors of UCP research paper, are generally not aware of previous published results and conclusions in the field of UCP effort estimation. There is a lack of UCP related publications in the top software engineering journals. This makes a conclusion that such papers are not useful for the community. Furthermore, most articles used small numbers of projects which cannot support generalizing the conclusion in most cases. Conclusions: There are multiple research directions for UCP method that have not been examined so far such as validating the algebraic construction of UCP based on industrial data. Also, there is a need for standard automated tools that govern the process of translating use case diagram into its corresponding UCP metrics. Although there is an increase interest among researchers to collect industrial data and build effort prediction models based on machine learning methods, the quality of data is still subject to debate


翻译:目标:有必要进行系统的文献审查,以便为这一研究领域的工作估计提供方向和支持。具体地说,本研究的目标是双重的:根据四个标准,根据贡献类型、研究方法、与UCP使用的数据集类型和技术,对UCP的工作估计文件进行分类;从不同角度分析这些文件:估计UCP的准确性、有利的估计背景和综合技术对UCP准确性的影响。方法:我们使用了基切汉姆和宪章提出的系统文献审查方法。这包括搜索最相关的文件、选择高质量文件、提取数据和绘制结果。结果:UCP研究文件的作者一般不知道以前公布的UCP工作估计领域的结果和结论。在顶级软件工程杂志中仍然缺乏与UCP有关的出版物。这使人得出结论,这类文件对于社区来说没有用处。此外,大多数项目使用少量的文献来进行系统化的文献审查,但无法通过大量的数据分析,因此无法将UCP的准确性数据作为基础。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
342+阅读 · 2020年1月27日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
已删除
德先生
53+阅读 · 2019年4月28日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Arxiv
0+阅读 · 2021年2月15日
Arxiv
2+阅读 · 2021年2月15日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
已删除
德先生
53+阅读 · 2019年4月28日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Top
微信扫码咨询专知VIP会员