For over a decade now, robotics and the use of artificial agents have become a common thing.Testing the performance of new path finding or search space optimization algorithms has also become a challenge as they require simulation or an environment to test them.The creation of artificial environments with artificial agents is one of the methods employed to test such algorithms.Games have also become an environment to test them.The performance of the algorithms can be compared by using artificial agents that will behave according to the algorithm in the environment they are put in.The performance parameters can be, how quickly the agent is able to differentiate between rewarding actions and hostile actions.This can be tested by placing the agent in an environment with different types of hurdles and the goal of the agent is to reach the farthest by taking decisions on actions that will lead to avoiding all the obstacles.The environment chosen is a game called "Flappy Bird".The goal of the game is to make the bird fly through a set of pipes of random heights.The bird must go in between these pipes and must not hit the top, the bottom, or the pipes themselves.The actions that the bird can take are either to flap its wings or drop down with gravity.The algorithms that are enforced on the artificial agents are NeuroEvolution of Augmenting Topologies (NEAT) and Reinforcement Learning.The NEAT algorithm takes an "N" initial population of artificial agents.They follow genetic algorithms by considering an objective function, crossover, mutation, and augmenting topologies.Reinforcement learning, on the other hand, remembers the state, the action taken at that state, and the reward received for the action taken using a single agent and a Deep Q-learning Network.The performance of the NEAT algorithm improves as the initial population of the artificial agents is increased.


翻译:10多年来, 机器人和人工剂的使用已成为常见事物。 测试新路径发现或搜索空间优化算法的性能也已成为一项挑战, 因为它们需要模拟或环境来测试它们。 以人工剂创建人工环境是用来测试这些算法的方法之一。 Games 也已成为测试这些算法的环境之一。 算法的性能可以通过使用根据在环境中的算法进行操作来比较。 性能参数可以是, 代理人能够如何迅速区分得益的行动和敌对行动。 可以通过将代理人置于不同类型障碍的环境中来测试。 代理人的目标是通过做出能够避免所有障碍的行动来达到最远。 所选择的环境是一个叫作“ Flappy Bird” 的游戏。 游戏的目的是让鸟类通过随机高度的管道飞翔。 鸟类必须进入这些管道, 并且不能在顶部、 底部或管道本身。 鸟的深度动作是“ 动性能动作, 动性能的动力动力动作是: 动动性动作, 动动性动作, 开始, 动动的动力动作, 开始, 开始, 开始, 动动动, 动作, 开始, 动动, 动动, 动动动动动, 开始, 动作, 动作, 动作, 开始, 动作, 动作, 动作, 动作, 动动动动动动, 动作, 动作, 开始, 开始, 开始, 动, 动, 动, 动, 动, 开始, 开始 开始 开始 动, 动作, 动作, 动作, 动, 动, 动, 动作, 动作, 动作, 开始, 动作, 开始, 开始, 动作, 开始, 动作, 动作, 动作, 动作, 开始, 动作, 动作, 动作, 动作, 动作, 动作, 动作, 动作, 动作, 动作, 动作, 动作, 动作, 动作, 动作, 动作, 动作, 动作, 开始, 动作, 动作, 动作, 动作, 动作, 开始, 动作, 开始, 开始, 动作, 动作, 动作, 动作, 动作, 动作,

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员