6G -- sixth generation -- is the latest cellular technology currently under development for wireless communication systems. In recent years, machine learning algorithms have been applied widely in various fields, such as healthcare, transportation, energy, autonomous car, and many more. Those algorithms have been also using in communication technologies to improve the system performance in terms of frequency spectrum usage, latency, and security. With the rapid developments of machine learning techniques, especially deep learning, it is critical to take the security concern into account when applying the algorithms. While machine learning algorithms offer significant advantages for 6G networks, security concerns on Artificial Intelligent (AI) models is typically ignored by the scientific community so far. However, security is also a vital part of the AI algorithms, this is because the AI model itself can be poisoned by attackers. This paper proposes a mitigation method for adversarial attacks against proposed 6G machine learning models for the millimeter-wave (mmWave) beam prediction using adversarial learning. The main idea behind adversarial attacks against machine learning models is to produce faulty results by manipulating trained deep learning models for 6G applications for mmWave beam prediction. We also present the adversarial learning mitigation method's performance for 6G security in mmWave beam prediction application with fast gradient sign method attack. The mean square errors (MSE) of the defended model under attack are very close to the undefended model without attack.


翻译:6G -- -- 第六代 -- -- 是目前正在开发的无线通信系统的最新蜂窝技术。近年来,机器学习算法被广泛应用于各个领域,例如保健、运输、能源、自主汽车等各个领域。这些算法还被用于通信技术,以提高系统在频谱使用、延缓度和安全方面的性能。随着机器学习技术的迅速发展,特别是深层学习,在应用算法时必须考虑到安全考虑。机器学习算法为6G网络提供了巨大的优势。尽管机器学习算法为6G网络提供了巨大的优势,但人工智能(AI)模型的安全问题通常被科学界所忽视。然而,安全也是AI算法的一个关键部分,这是因为AI模型本身也可能受到攻击者的毒害。本文件提出了针对拟议的6G机器学习技术的对抗性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
58+阅读 · 2020年5月9日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
创业邦杂志
5+阅读 · 2019年3月27日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
18+阅读 · 2019年1月16日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
Arxiv
26+阅读 · 2018年8月19日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关VIP内容
相关资讯
已删除
创业邦杂志
5+阅读 · 2019年3月27日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员