Natural language-based user profiles in recommender systems have been explored for their interpretability and potential to help users scrutinize and refine their interests, thereby improving recommendation quality. Building on this foundation, we introduce a human-AI collaborative profile for a movie recommender system that presents editable personalized interest summaries of a user's movie history. Unlike static profiles, this design invites users to directly inspect, modify, and reflect on the system's inferences. In an eight-week online field deployment with 1775 active movie recommender users, we find persistent gaps between user-perceived and system-inferred interests, show how the profile encourages engagement and reflection, and identify design directions for leveraging imperfect AI-powered user profiles to stimulate more user intervention and build more transparent and trustworthy recommender experiences.
翻译:基于自然语言的推荐系统用户画像因其可解释性及帮助用户审视与优化兴趣的潜力而受到关注,从而提升推荐质量。在此基础上,我们为电影推荐系统提出了一种人机协同画像,该画像呈现用户观影历史中可编辑的个性化兴趣摘要。与静态画像不同,此设计邀请用户直接检视、修改并反思系统的推断。通过为期八周、涉及1775名活跃电影推荐用户的在线实地部署,我们发现用户感知兴趣与系统推断兴趣之间存在持续差距,展示了该画像如何促进用户参与和反思,并提出了利用不完善的人工智能用户画像激发更多用户干预、构建更透明可信推荐体验的设计方向。