Processing long visual token sequences poses a significant computational burden on Multimodal Large Language Models (MLLMs). While token pruning offers a path to acceleration, we find that current methods, while adequate for general understanding, catastrophically fail on fine-grained localization tasks. We attribute this failure to the inherent flaws of the two prevailing strategies: importance-based methods suffer from a strong positional bias, an inherent model artifact that distracts from semantic content, while diversity-based methods exhibit structural blindness, disregarding the user's prompt and spatial redundancy. To address this, we introduce D2Pruner, a framework that rectifies these issues by uniquely combining debiased importance with a structural pruning mechanism. Our method first secures a core set of the most critical tokens as pivots based on a debiased attention score. It then performs a Maximal Independent Set (MIS) selection on the remaining tokens, which are modeled on a hybrid graph where edges signify spatial proximity and semantic similarity. This process iteratively preserves the most important and available token while removing its neighbors, ensuring that the supplementary tokens are chosen to maximize importance and diversity. Extensive experiments demonstrate that D2Pruner has exceptional efficiency and fidelity. Applied to LLaVA-1.5-7B for general understanding tasks, it reduces FLOPs by 74.2\% while retaining 99.2\% of its original performance. Furthermore, in challenging localization benchmarks with InternVL-2.5-8B, it maintains 85.7\% performance at a 90\% token reduction rate, marking a significant advancement with up to 63. 53\% improvement over existing methods.
翻译:处理长视觉令牌序列给多模态大语言模型(MLLM)带来了显著的计算负担。尽管令牌剪枝提供了一条加速路径,但我们发现,现有方法虽然在通用理解任务上表现尚可,但在细粒度定位任务上却会灾难性地失效。我们将此失败归因于两种主流策略的内在缺陷:基于重要性的方法受到强烈的位置偏差影响,这是一种固有的模型伪影,会分散对语义内容的关注;而基于多样性的方法则表现出结构盲目性,忽视了用户的提示和空间冗余。为解决这一问题,我们提出了D2Pruner框架,该框架通过独特地将去偏的重要性与结构剪枝机制相结合来纠正这些问题。我们的方法首先基于去偏的注意力分数,确定一组最关键的核心令牌作为枢纽。随后,在剩余令牌上执行最大独立集(MIS)选择,这些令牌被建模在一个混合图上,其中边表示空间邻近性和语义相似性。此过程迭代地保留最重要且可用的令牌,同时移除其邻居,确保补充令牌的选择能够最大化重要性和多样性。大量实验表明,D2Pruner具有卓越的效率和保真度。将其应用于LLaVA-1.5-7B进行通用理解任务时,它能将FLOPs减少74.2%,同时保持其原始性能的99.2%。此外,在采用InternVL-2.5-8B的具有挑战性的定位基准测试中,它在令牌减少率为90%的情况下仍能保持85.7%的性能,这标志着相较于现有方法高达63.53%的显著提升。