Terrestrial animals and robots are susceptible to flipping-over during rapid locomotion in complex terrains. However, small robots are less capable of self-righting from an upside-down orientation compared to small animals like insects. Inspired by the winged discoid cockroach, we designed a new robot that opens its wings to self-right by pushing against the ground. We used this robot to systematically test how self-righting performance depends on wing opening magnitude, speed, and asymmetry, and modeled how kinematic and energetic requirements depend on wing shape and body/wing mass distribution. We discovered that the robot self-rights dynamically using kinetic energy to overcome potential energy barriers, that larger and faster symmetric wing opening increases self-righting performance, and that opening wings asymmetrically increases righting probability when wing opening is small. Our results suggested that the discoid cockroach's winged self-righting is a dynamic maneuver. While the thin, lightweight wings of the discoid cockroach and our robot are energetically sub-optimal for self-righting compared to tall, heavy ones, their ability to open wings saves them substantial energy compared to if they had static shells. Analogous to biological exaptations, our study provided a proof-of-concept for terrestrial robots to use existing morphology in novel ways to overcome new locomotor challenges.
翻译:地面动物和机器人在复杂地形的快速移动期间很容易翻转。 然而, 小机器人比昆虫这样的小动物更没有能力从上到下的方向自我调整。 在翼形的蟑螂的启发下,我们设计了一个新的机器人,通过推倒地面,打开翅膀的机翼可以自我右转。 我们用这个机器人系统测试自我调整的性能如何取决于机翼的开阔度、速度和不对称性能,模型显示运动和精力需求如何取决于机翼形状和机体/机翼的质量分布。 我们发现机器人自我权利动态地使用动能克服潜在的能源屏障,更大和更快的对称翼的机翼打开会提高自我调整性能的性能。 在机翼开阔时,开机翼会不对称地增加机翼的右转机率。 我们的结果表明,盘形蟑螂的机翼的机翼是动态动作,轻量的机翼取决于机翼形状和机体的形状和机体/机翼的容。 我们发现, 与高重的、重的机翼相比,它们能够用动的机翼节能节能节能节能来保存潜在的机翼来提升性功能, 当它们使用新式的机体的机体研究时, 当它们使用新式的机体的机体的机体的机体研究时, 则提供新式的机体能, 与地面的机体能的机体制的机体制的机体的机体的机体的机体的机体, 进行新的的机体的机体的机体反的机体的机体的机体的机体的机体的机体的机体的机体的机制研究, 以进行新的研究,以进行新的的机制的机制的机制的机制的机制研究。