The parallel strong-scaling of Krylov iterative methods is largely determined by the number of global reductions required at each iteration. The GMRES and Krylov-Schur algorithms employ the Arnoldi algorithm for nonsymmetric matrices. The underlying orthogonalization scheme is left-looking and processes one column at a time. Thus, at least one global reduction is required per iteration. The traditional algorithm for generating the orthogonal Krylov basis vectors for the Krylov-Schur algorithm is classical Gram Schmidt applied twice with reorthogonalization (CGS2), requiring three global reductions per step. A new variant of CGS2 that requires only one reduction per iteration is applied to the Arnoldi-QR iteration. Strong-scaling results are presented for finding eigenvalue-pairs of nonsymmetric matrices. A preliminary attempt to derive a similar algorithm (one reduction per Arnoldi iteration with a robust orthogonalization scheme) was presented by Hernandez et al.(2007). Unlike our approach, their method is not forward stable for eigenvalues.
翻译:Krylov 迭代方法的平行强烈缩放主要取决于每次迭代所需的全球降级数量。 GMRES 和 Krylov-Shur 算法对非对称矩阵采用 Arnoldi 算法。 底正正方正方形方案为左观, 一次处理一列。 因此, 需要按迭代方式至少进行一次全球降级。 Krylov- Schur 算法生成正方形Krylov 基矢量的传统算法是古典Gram Schmid, 两次使用正方形法( CGS2), 需要每步三次降级。 CGS2 的新变体对Arnoldi- QRerveration只要求一次降级。 为找到非正向矩阵的eigenvalue-pair, 由 Herndez 等人( 2007) 提出了类似的算法( 与我们的方法不同, 其方法对正方形数值不具有前向稳定 。