In this paper we discuss our experience in teaching the Robotic Applications Programming course at ZHAW combining the use of a Kubernetes (k8s) cluster and real, heterogeneous, robotic hardware. We discuss the main advantages of our solutions in terms of seamless simulation-to-real experience for students and the main shortcomings we encountered with networking and sharing GPUs to support deep learning workloads. We describe the current and foreseen alternatives to avoid these drawbacks in future course editions and propose a more cloud-native approach to deploying multiple robotics applications on a k8s cluster.
翻译:在这份文件中,我们讨论了我们在ZHAW教授机器人应用方案课程方面的经验,该课程将使用Kubernetes(K8s)集群与实际的、多式的机器人硬件相结合,我们讨论了我们的解决办法的主要优点,即学生的模拟到实际的无缝经验,以及我们在建立网络和共享GPU以支持深层学习工作量方面遇到的主要缺点。我们描述了目前和预期的替代办法,以避免在今后的课程版本中出现这些缺陷,并提出在K8s集群上部署多个机器人应用程序的更云化的办法。