It is well known that every stable matching instance $I$ has a rotation poset $R(I)$ that can be computed efficiently and the downsets of $R(I)$ are in one-to-one correspondence with the stable matchings of $I$. Furthermore, for every poset $P$, an instance $I(P)$ can be constructed efficiently so that the rotation poset of $I(P)$ is isomorphic to $P$. In this case, we say that $I(P)$ realizes $P$. Many researchers exploit the rotation poset of an instance to develop fast algorithms or to establish the hardness of stable matching problems. In order to gain a parameterized understanding of the complexity of sampling stable matchings, Bhatnagar et al. [SODA 2008] introduced stable matching instances whose preference lists are restricted but nevertheless model situations that arise in practice. In this paper, we study four such parameterized restrictions; our goal is to characterize the rotation posets that arise from these models: $k$-bounded, $k$-attribute, $(k_1, k_2)$-list, $k$-range. We prove that there is a constant $k$ so that every rotation poset is realized by some instance in the first three models for some fixed constant $k$. We describe efficient algorithms for constructing such instances given the Hasse diagram of a poset. As a consequence, the fundamental problem of counting stable matchings remains $\#$BIS-complete even for these restricted instances. For $k$-range preferences, we show that a poset $P$ is realizable if and only if the Hasse diagram of $P$ has pathwidth bounded by functions of $k$. Using this characterization, we show that the following problems are fixed parameter tractable when parametrized by the range of the instance: exactly counting and uniformly sampling stable matchings, finding median, sex-equal, and balanced stable matchings.


翻译:众所周知, 每一个稳定的匹配 美元 美元 都有一个可以高效计算的旋转 美元 R (I) 美元 。 许多研究人员利用一个旋转 的 美元, 来开发快速算法或确定稳定的匹配问题的硬性。 此外, 对于每一个 美元, 一个 美元 (P) 的例子可以高效地构建。 这样, 美元 (P) 的旋转 方 值是不固定的 美元 到 $ 美元 。 在此情况下, 我们说 美元 (P) 就能实现 美元 。 许多研究人员利用 一个旋转 的 方 美元, 来开发一个快速算法 美元, 或建立稳定的匹配问题的硬性 。 为了获得对 固定匹配 的复杂程度的参数, Bhatnagar et al。 [SODDR 2008 引入了一个稳定的匹配实例, 但其优惠列表是有限的, 但实际上会出现模式的模型。 我们研究的参数化限制是四个。

0
下载
关闭预览

相关内容

专知会员服务
84+阅读 · 2020年12月5日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月19日
Arxiv
0+阅读 · 2021年3月19日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员