项目名称: 光催化分解水制取氢气的Ag/TiO2组装结构基于表面等离子体光子学原理的两种设计

项目编号: No.51272107

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 刘孝恒

作者单位: 南京理工大学

项目金额: 80万元

中文摘要: 光催化分解水制取氢气的研究至今仍是科学界的热点问题。最近,基于表面等离子体光子学原理的相关光催化研究又引起较大关注,该方法使用的催化剂仍可采用金属单质/TiO2等传统复合体,但此时光催化原理已发生颠倒性变化,即光辐射的有效接受体不是TiO2而是某些纳米化金属单质。 本研究旨在通过控制纳米Ag的尺寸、几何形状以及和TiO2的结合方式等手段,提高分解水制取氢气的效率,包括可见光的有效利用,产氢速度的提高等。方法1,采用十六烷基三甲基溴化铵(CTAB)作模版,首先获得TiO2纳米线自组装阵列结构,再充分利用模版CTAB的功能:(1)通过AgNO3与模版中的Br-反应等过程获取Ag单质;(2)CTAB等可继续控制纳米Ag的形貌。这样可生成纳米Ag/TiO2纳米线的交替复合结构。方法2,改进传统做法,适当提高Ag在复合体中的含量,将纳米TiO2低密度组装到纳米Ag片表面,促成纳米Ag有效接受光辐照。

中文关键词: 二氧化钛;银;氧化锌;金;光催化

英文摘要: The photochemical splitting of water to form H2 and O2 is of critical importance for the development of a sustainable energy in the future.?Recently plasmonic nanostructures of noble metals (mainly silver) also show significant promise. The nanocomposite of Ag/TiO2 can still be used for this plasmonic process,but the photocatalysis mechanism has shown inversional change. Namely the acceptor of light illumination?is no longer TiO2 but nanosized silver. Herein the silver plasmonic factors related to its size, shape and interaction with TiO2 nanoparticle will be investigated carefully, to obtain efficient conversion of solar energy into fuels, including using visible-light as illumination source,increasing H2 involution speed and so on. The research consistes of two methods. In method 1, self-assembled TiO2 nanowires array can be templated by cetyl trimethylammonium bromide (CTAB). Then the silver nanomaterials can be obtained by the reaction of Br- from template with Ag+ form AgNO3 and decomposition of AgBr,and the size and shape of silver nanomaterials will be controlled by the template (CTAB)or additional polymers.Thus the silver nanomaterials can be loaded into TiO2 nanowire layer. In method 2, traditional Ag/TiO2 composite structure will be improved. The content of silver in composite will be increased and Ti

英文关键词: TiO2;Ag;ZnO;Au;photocatalysis

成为VIP会员查看完整内容
0

相关内容

《智能电网组件:功能和效益》白皮书
专知会员服务
26+阅读 · 2022年4月13日
全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
58+阅读 · 2022年2月3日
专知会员服务
42+阅读 · 2021年9月7日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
31+阅读 · 2021年5月7日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
专知会员服务
182+阅读 · 2020年11月23日
【ECCV2020】EfficientFCN:语义分割中的整体引导解码器
专知会员服务
15+阅读 · 2020年8月23日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
The Importance of Credo in Multiagent Learning
Arxiv
1+阅读 · 2022年4月15日
Arxiv
12+阅读 · 2020年12月10日
小贴士
相关主题
相关VIP内容
《智能电网组件:功能和效益》白皮书
专知会员服务
26+阅读 · 2022年4月13日
全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
58+阅读 · 2022年2月3日
专知会员服务
42+阅读 · 2021年9月7日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
31+阅读 · 2021年5月7日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
专知会员服务
182+阅读 · 2020年11月23日
【ECCV2020】EfficientFCN:语义分割中的整体引导解码器
专知会员服务
15+阅读 · 2020年8月23日
相关资讯
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员