项目名称: 基于NHSG 技术的还原氮化法合成介孔TiN 纳米粉体及结构性能表征

项目编号: No.51272066

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 卜景龙

作者单位: 河北联合大学

项目金额: 80万元

中文摘要: 介孔氮化钛(TiN)纳米粉体作为高效耐用燃料电池电极催化剂载体发展潜力巨大。合成高活性TiO2前驱体及微观结构调控是还原氮化法制备介孔TiN纳米粉体的关键科学技术问题。非水解溶胶-凝胶技术(Nonhydrolytic Sol-Gel process,简称NHSG)易于控制,工艺简单,可获得更高活性介孔可控的TiO2前驱体,有望成为介孔TiN纳米粉体合成与调控的有效途径。本项目提出非水解溶胶-凝胶技术结合还原氮化法合成介孔TiN 纳米粉体的新思路,研究适合还原氮化的介孔TiO2前驱体NHSG合成路线,调控前驱体介孔结构,优化还原氮化技术,探讨介孔TiN 纳米粉体作为燃料电极催化剂载体的应用特性,开发出用于燃料电池电催化剂载体的介孔TiN纳米粉体。揭示TiO2前驱体物相及其介孔结构对TiN合成与微观结构影响,分析制备工艺、结构与性能关系,为介孔TiN纳米粉体合成及介孔结构调控提供理论支持。

中文关键词: 氮化钛;介孔;纳米粉体;非水解溶胶凝胶;还原氮化

英文摘要: Mesoporous titanium nitride (TiN) nanopowder has a great potential to act as a durable electrocatalyst support for fuel cells. The synthesis of high activity titanium oxide (TiO2) precursor and its microstructure control are the key scientific and technological problems in the preparation of mesoporous TiN nanopowder. A novel and availably pathway to solve those problems is provided by non-hydrolytic sol-gel (NHSG) process which results in the formation of controllable mesoporous TiO2 precursor with higher surface areas through a simple procedure. Therefore, in this project, mesoporous TiN nanopowder will be synthesised by reduction-nitridation reaction based on nonhydrolytic sol-gel method. The NHSG synthesis and control of mesoporous TiO2 precursor and its reduction-nitridation process will be studied. The electrochemical behavior of mesoporous TiN nanopowder based electrocatalysts under fuel cell conditions will be investigated. In order to obtain the related reduction-nitridation theory, the effect of TiO2 precursor phase and its mesoporous structure on the synthesis of mesoporous TiN nanopowder will be discovered. Meanwhile the relationship of process, structure and properties will aslo be researched.

英文关键词: titanium nitride;mesoporous;nanopowder;nonhydrolytic sol-gel;reduction-nitridation

成为VIP会员查看完整内容
0

相关内容

《华为智慧农业解决方案》21页PPT
专知会员服务
114+阅读 · 2022年3月23日
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
12+阅读 · 2022年3月23日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
40+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
准确率达 95%,机器学习预测复杂新材料合成
机器之心
1+阅读 · 2022年1月1日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这75页PPT把物联网体系结构都说透了...
物联网智库
48+阅读 · 2019年4月24日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
The Importance of Credo in Multiagent Learning
Arxiv
0+阅读 · 2022年4月15日
Arxiv
46+阅读 · 2021年10月4日
小贴士
相关主题
相关VIP内容
相关资讯
准确率达 95%,机器学习预测复杂新材料合成
机器之心
1+阅读 · 2022年1月1日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这75页PPT把物联网体系结构都说透了...
物联网智库
48+阅读 · 2019年4月24日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员