项目名称: 表面态对氧化物半导体低维纳米结构光电性能的影响

项目编号: No.11274093

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 杜祖亮

作者单位: 河南大学

项目金额: 95万元

中文摘要: 本项目主要研究ZnO等氧化物纳米线表面态的物理属性,揭示表面态控制势垒的物理机制和微观过程,探索表面态独特的热力学转变过程和捕获载流子的动态过程,并进而研究其对纳米结构性能的影响,为探索调控表面态的新方法、发展新型纳米器件提供理论基础。主要研究内容包括:(1)研究吸附氧、氧空位、吸附水等表面态的数量、形态、及其相互作用对纳米线肖特基势垒高度、界面电场的影响,探索表面态控制势垒的物理机制;(2)研究环境和温度变化时表面态的热力学变化过程,探索费米能级位置的改变对表面态热力学变化过程的影响,揭示费米能级调控下表面态热力学过程的物理机制;(3)研究表面态捕获电子和光生空穴等载流子的动态过程,探索界面电场对动态过程的影响,揭示界面电场调控下表面态捕获载流子的物理机制与微观过程。

中文关键词: 氧化物纳米结构;肖特基势垒;表面态;光电传输特性;

英文摘要: The project mainly focuses on the physical properties of surface states of oxide nanowire Schottky barrier, investigates the mechanism of the influences of surface states on barrier, studies the novel thermodynamic process and capturing carriers process of surfaces states,and reveals its influences on the physical properties of nanostructure, which should provide new modulation method of surface states and theoretical principle of novel nanodevices. The detailed research contents include: (1) Investigate the influences of quantity, state and interaction of adsorbed oxygen, oxygen vacancy and adsorbed H2O on barrier height and interface electric field, and study the influence of existing states of surface states on barrier and the corresponding physical mechanism. (2) Investigate the thermodynamic process of surface states induced by the variation of atmosphere and temperature, study the influence of Fermi level position on the thermodynamic process of surface states, and reveal the corresponding physical mechanism. (3) Investigate the dynamic process of capturing electrons and photogenerated holes by surface states, study the influences of interface electric field on the capturing process, and reveal the corresponding physical mechanism.

英文关键词: oxide nanostructure;Schottky barrier;surface states;photo-charge transport properties;

成为VIP会员查看完整内容
0

相关内容

专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
专知会员服务
28+阅读 · 2021年2月17日
专知会员服务
21+阅读 · 2020年9月14日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
126+阅读 · 2020年9月6日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Arxiv
26+阅读 · 2018年8月19日
小贴士
相关VIP内容
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
专知会员服务
28+阅读 · 2021年2月17日
专知会员服务
21+阅读 · 2020年9月14日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员