项目名称: 硫铝酸钡(锶)钙特种水泥基海工修补材料胶凝膨胀机理研究
项目编号: No.51472041
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 一般工业技术
项目作者: 常钧
作者单位: 大连理工大学
项目金额: 83万元
中文摘要: 海工混凝土应用环境恶劣、侵蚀损坏严重、维护投入巨大、修补方法有限,亟待高效低成本的水泥基修补材料。由于硫铝酸钡(锶)钙水泥的防腐抗渗、快硬高强性能优异,且膨胀系数和凝结时间可调,使其成为理想的海工修补基础材料,但是其水化胶凝膨胀机理研究尚不系统深入。针对海工混凝土工程出现的微裂纹、裂缝、剥蚀、脱落等不同损坏情况,需要修补材料具有不同的胶凝膨胀特性。本课题将合成系列硫铝酸钡(锶)钙单矿物,研究其烧成制度、确定钡(锶)的最高摩尔比例、晶体结构参数、强度变化规律、抗海水侵蚀性能、水化硬化及膨胀机理;在单矿物研究基础上,确定硫铝酸钡(锶)钙水泥熟料的矿相组成设计,烧制系列水泥熟料并优化与石膏的匹配关系;调整水泥细度,辅助胶凝材料的种类和比例,检验其耐久性及胶凝膨胀特性;结合强度及膨胀系数的理论计算与实测结果对比,建立单矿物及修补材料的水化胶凝膨胀模型;为适应不同修补条件的海工修补材料提供理论依据。
中文关键词: 水泥基材料;新型胶凝材料;水化机理;水泥水化;耐久性
英文摘要: Poor application environment of marine concrete lead to serious erosion damage and the enormous maintenance cost, and the repair methods are finite; therefore the high efficiency and low cost cement-based repair materials need to be manufactured. Because the barium (strontium)-calcium sulphoaluminate cement has excellent properties of penetration resistance, fast setting and high strength, the expansion coefficient and setting time are controllable, so it become an ideal base material for marine concrete repair, however, the mechanism of hydration and expansion of cement are not clear enough.In addition, owing to the different damage conditions of marine concrete engineering,such as micro crack, macro crack, denudation, falling off, the repair materials need to have special cementation and expansion properties. This project will synthesise a series of minerals of barium (strontium) calcium suphoaluminate firstly, and then research on the firing technology, maximum mole content of barium (strontium) in the minerals,the crystal structure parameters, strength changing law, the properties of resistance to seawater corrosion, and the mechanism of hydration and expansion. On the basis of single mineral research, to confirm the clinker mineral composition and proportion, to sinter a series cement clinker and optimize the relationship between cement clinker and gypsum. The type and proportion of auxiliary cementitious materials and the fineness of barium (strontium) calcium suphoaluminate cement will be optimized and its durability will be tested. The hydrated strength and expansion models will be built based on the theoretical calculation and the measured results. To provide theoretical support for the cement based repairing material under different destruction of marine concrete engineering structure.
英文关键词: cement based material;new type cementitious material;hydration mechanism;cement hydration;durability