项目名称: 面向酿酒过程多模型软测量建模的多视角大规模模糊聚类方法研究
项目编号: No.61300151
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 自动化技术、计算机技术
项目作者: 王骏
作者单位: 江南大学
项目金额: 25万元
中文摘要: 由于酿酒发酵过程数据采集的设备呈现多组化,多视角化以及智能化的特点,导致采集的数据具有数据量大、多视角和演化等重要特性,为模糊聚类技术在此领域的应用提出了重要挑战。本项目拟针对酿酒过程多模型软测量建模的实际需要,探索面向酿酒过程多模型软测量建模的多视角大规模模糊聚类方法。研究内容包括:(1)结合酿酒发酵过程的机理模型,研究面向多视角数据的自适应模糊聚类新方法MV-AFC;(2)研究基于二阶差分的蒙特卡罗自适应采样新方法,以渐进采样为策略,以实现大规模数据环境下的快速模糊聚类;(3)开发领域自适应多视角模糊聚类学习算法DA-MV-AFC,以实现演进渐变式学习。课题组前期工作为本课题的展开提供了充分的技术准备。
中文关键词: 模糊聚类;多视角聚类;无监督距离度量学习;深度特征表示;
英文摘要: The data collected from the brewing process are becoming larger and larger and even contain multi-view information, which poses a great challenge to current studies on fuzzy clustering. Motivated by such a challenge, this project aims to develop large-scaled multi-view fuzzy clustering algorithms for the multiple soft sensing models in practical brewing process. Firstly, a novel multi-view based adaptive fuzzy clustering algorithm named MV-AFC will be developed by integrating with the mechanical model of fermentation for the brewing process. Secondly, a novel progressive sampling strategy using a novel second order differential Monte Carlo sampling will be developed and accordingly a fast multi-view fuzzy clustering algorithm fast-MV-AFC will be proposed for clustering on large-scaled data. Thirdly, a novel multiple view adaptive fuzzy clustering algorithm will be developed for domain adaptation. Our work in the past years has provided solid foundation for this project.
英文关键词: fuzzy clustering;multi-view learning;unsupervised distance metric learning;deep feature representation;