项目名称: 连续加工过程中点击化学反应制备结构规整的一维凝胶器件的研究

项目编号: No.21304019

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 姚芳

作者单位: 东南大学

项目金额: 25万元

中文摘要: 点击化学技术的发展为制备分子结构规整和功能精确可控的高强度水凝胶,及其在具有膜功能的仿生器件中的应用成为可能。水凝胶是分子交联体系,后期加工成型困难,特别是在连续加工过程中制备一维水凝胶器件。因此通过连续法制备水凝胶器件就必须将水凝胶的成型加工和点击化学反应有效结合起来,既在加工过程中实现点击化学反应。本项目将研究在挤出成型及静电纺丝过程中进行铜催化的炔、叠氮环加成的点击化学反应,在连续生产过程中制备一维管状及纳米纤维水凝胶。为了提高水凝胶的功能性及响应性,还在分子合成及设计的基础上通过表面接枝改性技术对制备的一维水凝胶器件进行表面改性。连续加工过程中进行点击化学反应制备一维水凝胶器件,具有生产效率高、易成型、成本低、能耗低等优势。本项目的成功开展为点击化学在连续工业生产中应用及制备一维高强度功能性水凝胶器件做了有益的尝试和探索。

中文关键词: 点击化学;静电纺丝;机械性能;凝胶;层状

英文摘要: Click Chemistry can prepare hydrogels with well-defined molecular structures and precisely controlled functionalities. The variable functionalities and high strength of these provide a possibility to the preparation of bionic membrane devices from hydrogels. Hydrogels has a cross-linked molecular structure, so it is difficult to prepare hydrogel devices, especially cylindrical hydrogel by post-processing. Thus, to prepare 1-D hydrogel devices by click chemistry, we must study the Click Chemistry in processing. Here, Click Chemistry in the continuous processing of the extrusion molding and electrospinning will be firstly studied and applied to prepare 1-D high strength tubular and nanofiber hydrogel devices. In order to improve and control the surface properties of the hydrogel devices, the molecular of the hydrogels was designed and further functionalized by subsequent grafting. The Click Chemistry in continuous processing can prepare 1-D hydrogel devices with high production efficiency, low cost and low energy consumption. The study of Click Chemistry in continues process provides a possibility to prepare high strength cylindrical and tubular polymer network and bionic hydrogel devices in industrial scale.

英文关键词: click chemistry;electrospinning;mechnical strength;hydrogel;Hierarchical

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
CIKM2021 | CD-GNN:一种跨领域的图神经网络模型
专知会员服务
28+阅读 · 2021年11月9日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
55+阅读 · 2021年6月30日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
22+阅读 · 2021年3月23日
专知会员服务
51+阅读 · 2020年12月28日
机器直觉
专知会员服务
26+阅读 · 2020年11月22日
ICLR 2022|化学反应感知的分子表示学习
专知
0+阅读 · 2022年2月10日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
17+阅读 · 2022年1月11日
Arxiv
19+阅读 · 2021年6月15日
Talking-Heads Attention
Arxiv
15+阅读 · 2020年3月5日
小贴士
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
CIKM2021 | CD-GNN:一种跨领域的图神经网络模型
专知会员服务
28+阅读 · 2021年11月9日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
55+阅读 · 2021年6月30日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
22+阅读 · 2021年3月23日
专知会员服务
51+阅读 · 2020年12月28日
机器直觉
专知会员服务
26+阅读 · 2020年11月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员