项目名称: 太阳能光催化分解水过程中产氧反应体系及机理的理论研究

项目编号: No.21473183

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 周新

作者单位: 大连大学

项目金额: 85万元

中文摘要: 光生电子与空穴的复合是限制半导体催化剂高效光催化分解水反应的主要因素之一。控制半导体光催化剂的形貌和在光催化剂表面担载助催化剂是促进光生电子与空穴分离的有效方法。本项目将围绕上述关键性科学问题,主要以光催化分解水中产氧反应体系为研究对象,应用密度泛函理论方法,考察产氧半导体材料(如Fe2O3, WO3,Ga2O3等)不同晶面的表面结构、稳定性、电子结构、载流子迁移率、吸光性质、水吸附情况及产氧反应机理;以团簇模型构建作为产氧助催化剂的金属氧化物(如IrO2, RuO2,NiO等);在此基础上,将助催化剂团簇搭建在主催化剂表面,研究助催化剂在主催化剂表面的吸附位点、成键方式,计算助催化剂的吸附对整个体系电子结构的影响,研究助催化剂和主催化剂界面间的电荷传输;考察水在复合体系中的吸附,确定复合体系的产氧反应活性中心和机理。

中文关键词: 密度泛函理论;光催化;水氧化;半导体材料

英文摘要: Photogenerated charge recombination is one of the key factors of limiting the overall energy conversion of photocatalytic water-splitting reactions on semiconductor-based photocatalysts. Controlling morphology of photocatalytsts and loading suitable cocatalysts on the surfaces of photocatalysts have been proved to be effective methods of promoting photogenerated charge separation. In this project, we are planning to focus on these key scientific questions, and investigate photocatalytic water oxidation materials by means of density functional theory (DFT) calculations. We will perform DFT calculations on the geometric structure, stability, electronic structure, optical properties, the mobility of charge carriers, water adsorption and mechanism of oxygen evolution of semiconductor materials (such as Fe2O3, WO3, Ga2O3,etc.) and use the cluster model of metal oxide to simulate oxidation cocatalysts (such as IrO2, RuO2, NiO, etc.). Then, we will investigate adsorption site and bonding of cocatalysts on the surface of photocatalysts, calculate the effect of loading cocatalysts on the surface of semiconductor on the electronic structure, study the interfacial charge transfer between cocatalysts and photocatalysts, consider molecular and dissociative water adsorptin on surfaces at different coverages and explore the reaction center and mechanism of oxygen evolution reaction.

英文关键词: Density functional theory;photocatalysis;water oxidation;semiconductor

成为VIP会员查看完整内容
0

相关内容

数字孪生模型构建理论及应用
专知会员服务
214+阅读 · 2022年4月19日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
110+阅读 · 2020年12月17日
【CMU博士论文】机器人深度强化学习,128页pdf
专知会员服务
125+阅读 · 2020年8月27日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
你买过什么很贵但不后悔的电子产品?
ZEALER订阅号
0+阅读 · 2022年1月22日
平安 | 图神经网络/强化学习招聘
图与推荐
0+阅读 · 2021年9月23日
已删除
将门创投
12+阅读 · 2017年10月13日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年5月16日
Arxiv
14+阅读 · 2022年5月14日
Arxiv
0+阅读 · 2022年5月12日
Arxiv
21+阅读 · 2019年3月25日
小贴士
相关主题
相关VIP内容
数字孪生模型构建理论及应用
专知会员服务
214+阅读 · 2022年4月19日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
110+阅读 · 2020年12月17日
【CMU博士论文】机器人深度强化学习,128页pdf
专知会员服务
125+阅读 · 2020年8月27日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员