项目名称: 直流双极电场作用下微细颗粒物的凝并

项目编号: No.51204032

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 冶金与矿业学科

项目作者: 郭尹亮

作者单位: 东北大学

项目金额: 25万元

中文摘要: 电除尘器对微细颗粒物(粒径小于1μm)的除尘效率低,是一个亟待解决的难题。双极电凝并除尘技术的发展为解决这一问题提供了有效的途径,由于这种单区式电凝并除尘器集颗粒物的荷电、凝并和去除于一体,且除尘效率高、凝并作用强,较以往的三区式和双区式电凝并除尘器具有优势,所以研究颗粒物在双极凝并电除尘器内稳定双极直流电场作用下的凝并规律具有重要意义。本项目首先根据新的边界条件- - 极板电流密度的t分布规律求解泊松方程,进而建立颗粒物时变荷电模型;同时,在除尘器出口处用EAA法检测粉尘荷电量,以验证荷电模型的正确性。在荷电研究基础上,引入交变电场中利用碰撞理论计算电凝并系数的方法,建立颗粒物在直流双极电场内的凝并系数理论模型,再通过不同芒刺间距、不同性质粉尘的凝并实验研究对理论模型进行修正,以得到符合实际的凝并系数修正计算式,从而推动气溶胶双极凝并理论的发展和双极凝并技术的工业应用。

中文关键词: 电除尘器;双极芒刺电极;粉尘荷电;除尘效率;凝并

英文摘要: It is a problem that fine particle(d<1μm) produced by industry production is more difficult to be collected by the traditional electrostatic precipitator (ESP). In order to solve the problem, a new-type electrostatic agglomeration apparatus with single DC bipolar electric field was proposed. The distinguishing feature of this electrostatic agglomeration apparatus is that charging, agglomerating and collecting of the fine particles can be all achieved in the single zone. So it is better than the traditional three-zone and two-zone ESP. It is important to investigate the charging and agglomeration of fine particle influenced by DC bipolar electric field. Therefore, the charging equation of fine paricle in this kind of electric field can be established by solving Poisson Eequation with t distribution of current density on the plate. To test the charging equation, the EAA method was used to test particle charging. Then, based on the charging equation, the formula to calculate the bipolar charged particles coagulation coefficient in DC bipolar field is derived by using the same method that used for evaluating the AC acoustic agglomeration coefficient. The experimental study on agglomeration of the particles with different properties in electric fields with different barb spacings was carried out. And the modified a

英文关键词: electrostatic precipitator;bipolar barb electrode;particle charging;dust removal efficiency;agglomeration

成为VIP会员查看完整内容
0

相关内容

专知会员服务
21+阅读 · 2021年8月23日
专知会员服务
103+阅读 · 2021年8月23日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
26+阅读 · 2021年2月12日
小目标检测技术研究综述
专知会员服务
118+阅读 · 2020年12月7日
专知会员服务
21+阅读 · 2020年9月14日
一网打尽!100+深度学习模型TensorFlow与Pytorch代码实现集合
OpenKG 祝大家元宵节快乐!
开放知识图谱
0+阅读 · 2022年2月15日
用扩散模型生成高保真度图像
TensorFlow
1+阅读 · 2021年8月17日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
数据分析师应该知道的16种回归技术:Lasso回归
数萃大数据
16+阅读 · 2018年8月13日
【工业智能】电网故障诊断的智能技术
产业智能官
34+阅读 · 2018年5月28日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
12+阅读 · 2020年12月10日
小贴士
相关主题
相关VIP内容
专知会员服务
21+阅读 · 2021年8月23日
专知会员服务
103+阅读 · 2021年8月23日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
26+阅读 · 2021年2月12日
小目标检测技术研究综述
专知会员服务
118+阅读 · 2020年12月7日
专知会员服务
21+阅读 · 2020年9月14日
一网打尽!100+深度学习模型TensorFlow与Pytorch代码实现集合
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
12+阅读 · 2020年12月10日
微信扫码咨询专知VIP会员