项目名称: 外场和自旋轨道耦合调制下非磁纳米结构中电子输运机理研究

项目编号: No.11304236

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 卢建夺

作者单位: 武汉科技大学

项目金额: 25万元

中文摘要: 由于自旋电子学的快速发展及自旋电子学器件具有的重大应用前景,纳米结构中自旋输运特性成为近年来凝聚态领域前沿研究的热点。 本项目拟采用转移矩阵方法理论上研究外场和自旋轨道耦合调制的非磁纳米结构中电子自旋输运机理。主要内容有:(1)分析外场、自旋轨道耦合、delta掺杂、结构尺寸和入射电子能量对电子输运性质的影响机理,据此建立多种因素影响下的非磁纳米结构模型;(2)针对模型,求解电子的透射系数、电导和自旋极化的表达式,建立进行数值计算的通用程序;(3)通过数值计算与数值分析,揭示电子输运与影响因素之间的依赖规律,以及电子输运变化时影响因素之间的关系;(4)确定获得较大自旋极化和极化电流的条件并在实验上进行验证。 有关研究可望加深对非磁纳米结构中电子输运性质的本质认识,探索到可控电子自旋的有效理论途径,进而促进实验上设计出具有纳米尺度的薄膜人工结构,推动新型人工材料物理和自旋电子学器件的研究。

中文关键词: 纳米结构;自旋极化;自旋电子学;自旋电子学器件;石墨烯

英文摘要: Due to the rapid development of spintronics and the significant application prospects of spintronic devices, the spin transport porperty in nanostructures becomes a hot topic of the condensed matter field in recent years. This project intends to use the transfer matrix method to theoretically study the spin-dependent electronic transport mechanism in nonmagnetic nanostructures modulated by external fields and spin-orbit coupling effects. The main contents are as follows: (1) We analyze effects of the external field, spin-orbit coupling, delta-doping and structure size as well as the incident electron energy on the electronic transport mechanism, and we establish a nonmagnetic nanostructure model under the influence of a variety of influencing factors; (2) For the model, we derive expressions of the electronic transmission coefficient, conductance and spin polarization, and establish the general program for the numerical calculation; (3) By numerical computation and numerical analysis, we reveal the relationship between the electron transport and influencing factors, and investigate the relationship between the factors when the electron transport changes; (4) We determine the condition to achieve the larger spin polarization and polarization current, and we will do experimental verification. The study is expec

英文关键词: Nanostructure;Spin polarization;Spintronics;Spintronic device;Graphene

成为VIP会员查看完整内容
0

相关内容

专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
103+阅读 · 2021年8月23日
专知会员服务
31+阅读 · 2021年5月7日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
专知会员服务
70+阅读 · 2021年3月27日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
你在网上抽奖中过什么电子产品吗?
ZEALER订阅号
0+阅读 · 2022年1月16日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
2022 年你最想拥有什么电子产品?
ZEALER订阅号
0+阅读 · 2022年1月9日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
Knowledge Representation Learning: A Quantitative Review
Arxiv
151+阅读 · 2017年8月1日
小贴士
相关VIP内容
相关资讯
你在网上抽奖中过什么电子产品吗?
ZEALER订阅号
0+阅读 · 2022年1月16日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
2022 年你最想拥有什么电子产品?
ZEALER订阅号
0+阅读 · 2022年1月9日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员