项目名称: 关于金属/金属氧化物纳米材料在水解氢气反应中原理和作用的理论研究

项目编号: No.21273268

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 高嶷

作者单位: 中国科学院上海应用物理研究所

项目金额: 78万元

中文摘要: 金属/金属氧化物纳米材料是水解氢气催化反应体系的重要组成部分。目前的理论研究大多采用小的模型体系研究材料的性质和催化反应机制,对材料结构的确定及其演化规律仍然缺乏足够的了解,从而成为研究实际体系的一个重要瓶颈。在该项目中,我们将首先利用basin-hopping、模拟退火以及软着陆等方法,结合密度泛函以及其他量子化学的基本算法,发展能够有效研究金属氧化物表面的金属纳米团簇结构的方法,并以此研究团簇的结构变化规律。然后,我们结合经典分子动力学、从头算分子动力学以及量子化学方法在上述纳米材料结构的基础上研究材料表面的水层结构以及水解氢气反应的催化机理,从而加深对纳米材料表面催化反应过程的理解,为今后进一步进行燃料电池和太阳能电池的理论设计奠定基础。

中文关键词: 金属/金属氧化物;第一性原理;多尺度模型;界面水;水分解

英文摘要: Metal/Metal Oxide nanomaterials are important for the catalytic systems in the water-splitting hydrogen production. Current theoretical research were mostly focused on the properties and catalytic mechanisms of these nanomaterials using the small model systems. The lack of knowledge of the structures and structral evolutions of the nanoclusters has become the bottleneck to study the practical systems. In this project, we will combine the basin-hopping algorithm, simulated annealing algorithm and soft-landing method with the density-functional theory and other quantum chemistry methods, to develop the method to investigate the structures of the metal nanoclusters on the surface of metal oxides. And this method will be further used to explore the structural evolution of the nanomaterials. Moreover, we will employ the classical molecular dynamics, ab initio molecular dynamics and quantum chemistry methods to study the water structures and the catalytic mechanisms on the surface of nanomaterials. This study will not only provide more understanding of the catalytic process on the surface of nanocatalytic systems, but will be beneficial for designing the fuel-cell and solar-cell in future.

英文关键词: Metal/metal-oxides;first-principle;multiscale model;interfacial water;water splitting

成为VIP会员查看完整内容
0

相关内容

专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
专知会员服务
220+阅读 · 2020年8月1日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
可对药物分子进行表征的几何深度学习
机器之心
0+阅读 · 2022年2月6日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
12+阅读 · 2020年12月10日
小贴士
相关主题
相关VIP内容
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
专知会员服务
220+阅读 · 2020年8月1日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
可对药物分子进行表征的几何深度学习
机器之心
0+阅读 · 2022年2月6日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员