项目名称: 来自于刮涂工艺的有机小分子-聚合物-富勒烯三组分太阳能电池的研究

项目编号: No.51503039

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 一般工业技术

项目作者: 陈惠鹏

作者单位: 福州大学

项目金额: 20万元

中文摘要: 成膜溶液粘度低是有机小分子:富勒烯异质结太阳能电池大面积工业化生产面临的一个主要挑战。有机小分子:聚合物:富勒烯三组分太阳能电池能有效的解决粘度问题,同时也很可能是突破两组分太阳能电池转化效率瓶颈的方案,并且它的组装工艺也远比两节串联电池简单。然而国际上对此类三组分电池的细致形貌以及卷对卷工艺的报道还是刚起步。因此,为了对三组分体系形貌和机理进行理解以及缩小实验室和企业间的差距,本申请拟对来自于涂布刮涂工艺(简化的卷对卷工艺)的三组分太阳能电池进行研究,特别是聚合物的添加对来自于此工艺的三组分电池的细致形貌的影响,并结合光伏性能,对三组分体系的电池机理进行理解;并且建立刮涂工艺-细致形貌-光电转化机理的关系模型,为工业生产高性能的有机小分子:聚合物:富勒烯三组分电池提供坚实理论和实验基础。

中文关键词: 有机光伏;三组分混合物;中子技术;涂布刮涂

英文摘要: The main challenge for the fabrication of large scale small molecule : fullerene bulk heterojunction solar cell is the low viscosity of the deposition solution. Small molecule : polymer : fullerene ternary blends is the solution for this challenge and is also an attractive strategy to break the pow conversion efficiency bottleneck for binary polymer:fullerene blends devices in polymer based solar cell while retaining the simplicity of fabrication for single cell devices rather than the more complex tandem cell devices. Unfortunately, until now there are only very few reports about the morphology and roll to roll fabrication of this ternary blends solar cell. Therefore, to fully understand the morphology and mechanism of this ternary system and to minimize the gap between laboratory and industry, this proposal is to study this ternary system from blade-coating technique (a simplied roll to roll technique), especially the impact of polymer addition on the detailed morphology, and correlate the photovaltaic properties to the solar cell mechanism; obtain the blade coating technique-detailed morphology-photovoltaics mechanism relationship, providing the solid theoretic and experimental foundation for the industrial fabrication of high performance small molecule : polymer : fullerene ternary blends solar cells.

英文关键词: Organic Photovoltaics;Ternary Blend;Neutron Technique;Blade Coating

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】299页PPT,NUS最全《自动合成》教程
专知会员服务
18+阅读 · 2022年3月17日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
40+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
【CVPR2021】自监督几何感知
专知会员服务
45+阅读 · 2021年3月6日
八一八:我就没搞明白什么叫“纯钴”电池
无人机
34+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Age Optimal Sampling Under Unknown Delay Statistics
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Transformers in Medical Image Analysis: A Review
Arxiv
39+阅读 · 2022年2月24日
小贴士
相关主题
相关VIP内容
【AAAI 2022】299页PPT,NUS最全《自动合成》教程
专知会员服务
18+阅读 · 2022年3月17日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
40+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
【CVPR2021】自监督几何感知
专知会员服务
45+阅读 · 2021年3月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员