项目名称: 基于质子型离子液体介微孔材料负载型烷基化催化剂的研究

项目编号: No.21306023

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 化学工业

项目作者: 盛晓莉

作者单位: 东南大学

项目金额: 25万元

中文摘要: 本项目通过分子设计和功能修饰合成新型质子型离子液体,利用质子型离子液体与表面活性剂之间的氢键等作用,以非离子型表面活性剂三嵌段共聚物和质子型离子液体为双模板剂,进行分子识别与自组装,溶致液晶原位合成具有介孔和微孔双重孔道结构多孔材料。研究优化组装环境,研究模板结构效应、介孔材料和微孔材料协同作用、组合量,获得相应的孔道效应调节机制。筛选活性组分,结合介孔孔道内丰富的硅羟基与活性组分间相互作用,采用微波、超声波浸渍等方法高效分散活性组分,制备得到基于质子型离子液体介微孔材料负载型烷基化催化剂。以邻二甲苯与苯乙烯的烷基化反应为探针,研究催化剂的界面效应、活性中心-载体间相互作用、孔度效应与催化性能之间的对应关系,明确负载型烷基化催化剂的酸性、以及催化剂载体的孔道结构等对反应活性和选择性的作用机制,为研究出在烷基化反应中具有高活性、高选择性和稳定性新型固体酸催化剂提供相应的科学依据。

中文关键词: 离子液体;溶致液晶;介微孔材料;烷基化催化剂;

英文摘要: A new approach to prepare hierarchically silica materials possessing both micro- and mesoporosity has been suggested in this project. The methods involves several sequential preparation steps as follows:1) molecular designing and function modification to synthesize protic ionic liquids, 2) molecular recognition and self-assembly of non-ionic block copolymer (acts as the surfactant) and the ionic liquids. The optimized assembly environment, the exact template effect and the unique synergy between the micro- and mesoporosity structure can be studied to obtain the corresponding regulation mechanism of the two channels. Moreover, supported alkylation catalyst based on protic ionic liquids and micro- and mesoporosity can be prepared by screening the active component and then combining the strong interaction between abundant silicon hydroxyl and active component. Some special impregnation methods can also be studied to improve the dispersion of the active component. In this project, the catalyst interface effect, the active center-support interaction, the porosity effect and the catalytic properties can be investigated by using the alkylation of o-xylene with styrene as a probe reaction. By this way, the reaction mechanism between the acid type of heteropoly acid solid catalyst, the pore structure of catalyst, the act

英文关键词: ionic liquid;lyotropic liquid;micro/mesopores materials;alkylation catalyst;

成为VIP会员查看完整内容
0

相关内容

全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
专知会员服务
25+阅读 · 2021年9月10日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
24+阅读 · 2021年4月21日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
八一八:我就没搞明白什么叫“纯钴”电池
无人机
34+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
The Importance of Credo in Multiagent Learning
Arxiv
1+阅读 · 2022年4月15日
小贴士
相关主题
相关资讯
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
八一八:我就没搞明白什么叫“纯钴”电池
无人机
34+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员