项目名称: 硅-多形碳化硅同轴纳米线激光器研究

项目编号: No.61204050

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 信息四处

项目作者: 王军转

作者单位: 南京大学

项目金额: 28万元

中文摘要: 对于全硅基光电子集成或硅芯片的光互连发展而言,实现高性能的硅基光源是最重要的期待。本项目主要研究同轴硅纳米线结构的电注入光激射特征及激光器基础。实验上,通过时序控制的等离子增强化学气相淀积方法在(N型)硅纳米线外层获得(本征型)纳米硅晶/多形碳化硅耦合发光介质,外壳层为P型掺杂非晶硅,构成同轴硅纳米线微腔振荡模式激光器基本结构。通过对其微结构、外场作用下载流子注入输运过程对发光特性的影响作用研究,理解和掌握该系统电注入高效发光和光增益物理机制,以及纳米线微腔的激光模式;特别通过发展新的制备方法和优化工艺条件,力求在纳米晶硅/多形碳化硅耦合发光介质性能上取得突破。将物理、材料和器件结构集成研究,实现高效电注入发光和光增益,为发展高性能全硅光源提供新的途径。

中文关键词: 纳米线;发光;硅基;氧化锌;硫化钼

英文摘要: Si light emitter particularly, laser has became the last missing part to implement an all-Si-based integration of optoelectronics and photonic interconnection. This project will explore a novel co-axial multilayer cavity, constructed on top of ultra-thin Si nanowires, to achieve effective electrical injection/luminescence and eventually lasing from the 1D cavity. Starting from p-doped Si nanowires grown via Vapor-Liquid-Solid mode on top of TCO coated glass substrate, conformal coating of sequentially intrinsic polymorphous silicon carbon (pm-SiC:H) and n-doped amorphous Si (a-Si:H) layer multiple layers will be achieved in a well-controlled PECVD deposition. The nanocrystalline Si particles embedded in the pm-SiC:H layer serves as a photon-energy-tunable optical/electrical light pumping medium. This approach allows the cavity dimensions to be precisely controlled, and coupling the pm-SiC:H emission with the optical modes in the 1D micro-cavity to achieve eventually lasing. We will carry out a systematic investigation of the influence of cavity dimensions, multilayer profile and carrier injection mechanism on the light emission properties of the nanowire cavity. We will develop also a new fabrication procedure and optimization strategy to combine the nc-Si light emission with the optical resonant mode in a 1D

英文关键词: nanowire;luminescence;Si-based;ZnO;MoS2

成为VIP会员查看完整内容
0

相关内容

《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
数字建筑发展白皮书(2022年)
专知会员服务
41+阅读 · 2022年4月1日
中国能源体系 碳中和路线图,254页pdf
专知会员服务
76+阅读 · 2022年3月23日
专知会员服务
21+阅读 · 2021年9月23日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
128+阅读 · 2021年3月9日
【AAAI2021】“可瘦身”的生成式对抗网络
专知会员服务
12+阅读 · 2020年12月12日
专知会员服务
21+阅读 · 2020年9月14日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
海洋论坛丨水声目标识别技术现状与发展
无人机
26+阅读 · 2018年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月27日
Arxiv
0+阅读 · 2022年4月25日
小贴士
相关VIP内容
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
数字建筑发展白皮书(2022年)
专知会员服务
41+阅读 · 2022年4月1日
中国能源体系 碳中和路线图,254页pdf
专知会员服务
76+阅读 · 2022年3月23日
专知会员服务
21+阅读 · 2021年9月23日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
128+阅读 · 2021年3月9日
【AAAI2021】“可瘦身”的生成式对抗网络
专知会员服务
12+阅读 · 2020年12月12日
专知会员服务
21+阅读 · 2020年9月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员