项目名称: 具有微/纳米结构的固-液界面热输运机理研究

项目编号: No.51206167

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 工程热物理与能源利用学科

项目作者: 祝捷

作者单位: 中国科学院工程热物理研究所

项目金额: 25万元

中文摘要: 具有微/纳米结构的表面在强化沸腾、冷凝传热、减少流阻等应用方面具有重要的优势,是目前国际上强化传热界面领域的研究热点。本项目主要以具有微/纳米结构的强化传热界面为研究对象,应用双波长飞秒激光抽运-探测热反射系统,对其固-液界面热阻进行精确测量和系统研究。通过对多种微米、纳米结构及微/纳米复合结构固-液界面热阻的测量及规律总结,得到表面微/纳结构的尺寸、形状、疏密程度及排列方式等对固-液界面热阻的影响规律。在理论上采用分子动力学模拟方法建立相应的热输运理论模型,揭示固-液界面热阻受纳米结构及材料影响的规律。通过实验与理论相结合,揭示固-液界面上热输运现象的微观机理,实现可对强化传热界面材料的性能进行准确表征及预测的目的。为指导强化传热界面材料的微/纳结构优化设计,进而为高性能换热器的研制提供实验依据及理论基础。

中文关键词: 飞秒激光抽运探测热反射;固液界面;纳米材料;热导率;分子动力学模拟

英文摘要: Solid-liquid interface with micro/nano-structure is propitious to the enhancement of boiling and condensing heat transfer, as well as to the reduction of flow resistance, and yet becomes research focus in the field of heat transfer enhancement today in the world. In this study, our goal is to investigate how the micro/nano-structure enhance heat transfer through solid-liquid interface, and the main efforts will be focused on accurately measuring the thermal resistance of solid-liquid interface using two-color femtosecond laser pump-probe thermoreflectance system. In order to understand how the size, shape, density, and arrangement of the micro/nano-structure on solid-liquid interface influence the interface thermal resistance, we have arranged an amount of measurement of the solid-liquid interface thermal resistance with sorts of micro/nano-structures. Molecular dynamics method will be utilized for heat transfer process simulation and analysis to theoretically make clear the influence rules of structures and material types on thermal resistance of solid-liquid interface. After that, we could find out the microscopic mechanism of thermal transport on solid-liquid interface, and accurately characterize and predict the performance of enhanced heat transfer interfacial material, and as a result, provide the experime

英文关键词: femtosecond laser pump and probe thermoreflectance;solid-liquid interface;nano-materials;thermal conductivity;molecular dynamics simulation

成为VIP会员查看完整内容
0

相关内容

Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
50+阅读 · 2021年5月19日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
19+阅读 · 2021年5月1日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
基于深度学习的多标签生成研究进展
专知会员服务
140+阅读 · 2020年4月25日
OPPO Find N,全新折叠旗舰全球发布
ZEALER订阅号
0+阅读 · 2021年12月14日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
25+阅读 · 2021年3月20日
Arxiv
11+阅读 · 2020年8月3日
Arxiv
10+阅读 · 2018年2月17日
小贴士
相关VIP内容
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
50+阅读 · 2021年5月19日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
19+阅读 · 2021年5月1日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
基于深度学习的多标签生成研究进展
专知会员服务
140+阅读 · 2020年4月25日
相关资讯
OPPO Find N,全新折叠旗舰全球发布
ZEALER订阅号
0+阅读 · 2021年12月14日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员