项目名称: 基于三维石墨烯的锂硫电池正极材料和器件研究
项目编号: No.51472124
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 一般工业技术
项目作者: 陈永胜
作者单位: 南开大学
项目金额: 84万元
中文摘要: 锂硫电池具有很高的理论比容量和比能量,是最具应用前景的锂离子电池之一。但锂硫电池发展至今仍存在比容量远低于理论值、循环性能较差的问题,主要原因是硫及其放电产物的低导电性、聚硫化物在电解液中的大量溶解流失以及相应的穿梭效应。本课题的主要研究目标就是设计合成具有良好的导电性、高的比表面、以及丰富孔洞结构的三维石墨烯材料,并以此材料作为支撑体负载硫,制备出具有高活性和高循环稳定性的三维石墨烯基锂硫电池正极材料。三维石墨烯材料高的比表面积和丰富的孔洞结构可以实现硫的高负载和高分散,丰富的三维孔洞结构可以起着很好的限域效果,有效地减少聚硫化物的扩散、流失。另外,我们还可以通过在三维石墨烯材料的表面负载一层多孔碳,构建一种三维石墨烯的大孔嵌套多孔碳的小孔的新颖孔结构,发辉大孔和小孔的协同效应,进一步抑制聚硫化物的扩散、流失。
中文关键词: 石墨烯;锂硫电池;锂离子电池;碳纳米材料;能源材料
英文摘要: Rechargeable lithium batteries have become one of the dominant portable rechargeable power sources due to their high volume and gravimetric energy density. However, the lower speci?c capacities of cathode materials compared to those of the anode have been a limiting factor to the energy density. Elemental sulfur is a promising cathode material for the next generation of high-specific-energy rechargeable lithium batteries due to its high theoretical specific capacity. However, Li/S batteries su?er from poor cyclability, which is mainly attributed to the dissolution of intermediate lithium polysul?de products, volumetric expansion and the poor conductivity of sulfur and polysul?de species. In order to address these challenges, porous carbon-based materials, especially graphene, have been used as cathode materials and have shown promising performance due to their obvious advantages of high conductivity and large surface area. Thus, in this project, 3D chemically bonded graphene foams with high electrical conductivity, large surface area and abundant 3D channels will be prepared and used as cathode materials after loading S. Self-assembly and chemically bonded graphene into macroscopic materials can translate the intriguing properties of graphene into the resulted macrostructures required for practical applications. When used as cathode materials of Li-S battery, the high surface area and 3D pore structure can achieve high loading and dispersion of sulfur, also the latter can effectively confine polysulfides from dissolving. The combination of the porous structure and excellent intrinsic properties of 3D graphene materials thus could provide fast mass and electron transport. To further improve the cycling performance of the Li-S battery, solid electrolyte will be applied to hinder the dissolution of intermediate lithium polysul?de products.
英文关键词: graphene;Li-S battery;Lithium ion battery;carbon nanomaterials;energy material