项目名称: 稳定高效的SiC基半导体可见光催化全解水制氢研究

项目编号: No.51472029

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 袁文霞

作者单位: 北京科技大学

项目金额: 83万元

中文摘要: 化合物半导体是一类重要的太阳能分解水制氢催化剂材料,然而转化效率高且得到实际应用的催化剂体系还需大力研发。禁带宽度可调、应用广泛的SiC具有化学性质稳定、高电子迁移率、价格低廉、环境友好等特性,是一种理想的可见光响应催化剂。本项目在前期SiC可见光催化分解水制氢的基础上,拟以提高SiC可见光全分解水催化活性为研究目标,构建SiC为核心产氢催化剂的Z型光催化体系,系统研究该类催化体系光催化全解水微观机制。通过SiC的p型或n型浅能级掺杂,研究半导体多子类型及其浓度对光生载流子传导分离的影响;对不同晶型SiC进行深能级掺杂,研究掺杂对SiC扩展半导体可见光响应范围的促进机制;引入高导电性固体媒介,研究溶液pH值、媒介/(助)催化剂界面性质、载流子传导等与催化效率的关系,力争开发出性能优良的新型光催化全分解水体系,挖掘SiC在光催化研究领域应用潜力,搞清楚限制半导体全分解水制氢效率的影响因素。

中文关键词: 化合物半导体;光催化材料

英文摘要: Compound semiconductors are a major class of materials acting as photocatalysts for conversion of solar energy into hydrogen by splitting water. However, the photocatalysts with high solar-energy conversion efficiency that can be used practically for water splitting still need to be further explored. Silicon carbide, a well-known semiconductor with tunning band gaps, is finding more and more applications in the recent years. It should be an ideal visible-light-driven photocatalyst in terms of appropriate band gap and CB position, high charge-carrier mobility, chemical stability, low cost and environmental friendliness. In this proposal, we will focus on studing Z scheme photocatalytic mechanism in order to enhance SiC photocatalytic activity by overall splitting water under visible-light irradiation. The influence of majority carriers in P-type or N-type SiC will be determined to understand the separation and migration of photo-excited carriers in a Z-scheme photocatalyst system. It is necessary to extend the response range of visible-light (e.g. from 420 to 600 nm) by deep-level doping of SiC with the different crystal structures. The solid photocatalyst interface is also needed to be studied when introducing a solid electron mediator. The research will facilitate the new enhanced photocatalysts and understand the limit factors for overall water splitting under visible-light illumination.

英文关键词: compound semiconductor;photocatalytic material

成为VIP会员查看完整内容
0

相关内容

全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
专知会员服务
15+阅读 · 2021年10月11日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
《2020人工智能医疗产业发展蓝皮书》发布
专知会员服务
113+阅读 · 2020年9月11日
专知会员服务
28+阅读 · 2020年8月8日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
专知会员服务
15+阅读 · 2021年10月11日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
《2020人工智能医疗产业发展蓝皮书》发布
专知会员服务
113+阅读 · 2020年9月11日
专知会员服务
28+阅读 · 2020年8月8日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员