项目名称: 以石墨烯构建二维水通道正渗透膜与内浓差极化消除机理研究

项目编号: No.51303183

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 杨海军

作者单位: 中国科学院化学研究所

项目金额: 25万元

中文摘要: 本研究受我国近海水生植物(海蓬子)脱盐取水机理启发,通过仿生设计并制备一种新型石墨烯基二维水通道正渗透膜,并以此膜为基础研究水分子受限于石墨烯片层之间的渗透流动行为,以解释单层水分子产生的纳米润滑效应和二维毛细效应,为解决正渗透(FO)海水淡化和压力阻尼渗透(PFO)发电上普遍存在的内浓差极化问题提供新思路和理论基础。本研究通过改变接枝到石墨烯上的氨化SiO2纳米颗粒的大小来实现对石墨烯二维水通道结构调控,并调控SiO2纳米颗粒的荷电量来改变水分子在石墨烯片晶间的流动状态;通过红外倍频/合频技术研究水分子在石墨烯片层间的含量变化,确定其与石墨烯通道内荷电量之间的关系;分析石墨烯片层上的共轭π键与具有残余势的二维水分子之间的非化学键作用,解释二维水通道内水分子的润滑效应。最终利用此原理设计并制备大通量FO膜材料。其单层水分子在二维水通道内的物理化学性质的研究具有重要的学术价值和潜在应用价值。

中文关键词: 正渗透膜;聚酰胺;TFC;氧化石墨烯;分离性能

英文摘要: A new bio-inspired graphene-based two-dimensional water channel forward osmosis membranes are first designed and fabricated by simulating the mechanism of draw water and desalination in China's aquatic plants (Salicornia) in this study. Based on it, the flow behavior of water molecules limited in graphene layers is explored, and to explain the Nano-lubricating Effect and two-dimensional Capillary Effect inspired by a single layer of water molecules, which provides a new idea and theoretical basis for solving the key problem of the concentration polarization in Forward Osmosis (FO) desalination technology and Pressured-Retarded Osmosis (PRO) technology. Two-dimensional water channel structure regulation between graphene sheet layers are achieved by changing ammoniated SiO2 nano particle size.And studies that the change of the flowing state of two-dimensional water molecular layers through regulation of the charge quantity of the SiO2 nano particles in the graphene sheet. With the methods of Frequency Doubling/ Combined Frequency, the relationship between the osmosis behavior of single water molecules layer between the graphene sheet and graphene charge quantity are discussed. And in view of that discussion on the role of non-chemical bond between two-dimensional water molecules (under the loss of three-dimensiona

英文关键词: forward osmosis membrane;polyamide;Thin Film Composite;graphene oxide;separation performance

成为VIP会员查看完整内容
0

相关内容

数字孪生模型构建理论及应用
专知会员服务
211+阅读 · 2022年4月19日
最新元宇宙白皮书:做虚实融合世界的赋能者
专知会员服务
105+阅读 · 2022年1月14日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
数据资产化前瞻性研究白皮书
专知会员服务
42+阅读 · 2021年11月19日
专知会员服务
67+阅读 · 2021年7月10日
专知会员服务
49+阅读 · 2021年6月16日
专知会员服务
28+阅读 · 2020年8月8日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Continuously-Tempered PDMP Samplers
Arxiv
0+阅读 · 2022年5月29日
Arxiv
0+阅读 · 2022年5月26日
Arxiv
0+阅读 · 2022年5月26日
Arxiv
26+阅读 · 2022年1月13日
小贴士
相关主题
相关VIP内容
数字孪生模型构建理论及应用
专知会员服务
211+阅读 · 2022年4月19日
最新元宇宙白皮书:做虚实融合世界的赋能者
专知会员服务
105+阅读 · 2022年1月14日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
数据资产化前瞻性研究白皮书
专知会员服务
42+阅读 · 2021年11月19日
专知会员服务
67+阅读 · 2021年7月10日
专知会员服务
49+阅读 · 2021年6月16日
专知会员服务
28+阅读 · 2020年8月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员