项目名称: 多铁性材料在纳米尺度上的结构和调控

项目编号: No.11274222

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 任伟

作者单位: 上海大学

项目金额: 75万元

中文摘要: 纳米尺度上的多铁性材料近年来在世界范围内引起了广泛的关注,其中包括畴壁、涡旋和异质结构等非常有趣而又应用广阔的体系。本项目研究畴壁结构在基底外延应变下的能量演变和物理特性,深入探讨电场、磁场下的多铁性涡旋的外场调控效应,以及探索和设计全新的多相多铁性材料和电子输运器件。我们将利用量子力学第一性原理的密度泛函理论计算和基于第一性原理的等效哈密顿方法,对于上述问题进行理论和计算上的解答。本项目将会紧密结合实验上最新的报道,与国内外实验同行进行合作并提出我们新的见解,同时改进我们的计算方法和理论水平。除了解决这些具体的物理问题之外,本项目的实施将有助于我们为开展中国的材料基因工程奠定基础,建立一支拥有精通纳米技术和计算科学专长的强大人才队伍。

中文关键词: 多铁材料;畴壁;钙钛矿;晶格应变;密度泛函理论

英文摘要: Multiferroic materials at nanoscale have attracted intensive attention worldwide in recent years, which include very interesting and potentially applicable domain wall, vortex, and heterostructure systems. In this project, we investigate the energy evolution and physical properties of domain walls under the substrate epitaxial strains. We explore deeply the field effect control of multiferroic vortex under electric and magnetic fields. Also we design and search novel multiphase multiferroic materials and electronic transport devices. To fulfill these goals theoretically and computationally, we are going to carry out density functional theory calculations relying on the laws of quantum mechanics, and first-principles based effective Hamiltonian approach as well. Our project will incorporate the latest experiments, and we will collaborate closely with experimentalists from China and overseas to advance the research field through our new insights. At the same time, we will refine and develop our computational methods and theoretical understanding. Besides solving the physical problems, this project will help us lay a foundation of Chinese materials genome initiative, and establish a strong research team with expertise of nanotechnology and computational sciences.

英文关键词: muliferroic materials;domain walls;perovskite;lattice strain;density functional theory

成为VIP会员查看完整内容
0

相关内容

MIT设计深度学习框架登Nature封面,预测非编码区DNA突变
专知会员服务
14+阅读 · 2022年3月18日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
23+阅读 · 2021年10月14日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
212+阅读 · 2021年8月2日
专知会员服务
31+阅读 · 2021年5月7日
MIT《图神经网络的任务结构与泛化》,22页ppt
专知会员服务
23+阅读 · 2021年2月28日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
启动报名 | 2022 Light博士生学术联赛
学术头条
0+阅读 · 2021年11月19日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月16日
小贴士
相关主题
相关VIP内容
MIT设计深度学习框架登Nature封面,预测非编码区DNA突变
专知会员服务
14+阅读 · 2022年3月18日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
23+阅读 · 2021年10月14日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
212+阅读 · 2021年8月2日
专知会员服务
31+阅读 · 2021年5月7日
MIT《图神经网络的任务结构与泛化》,22页ppt
专知会员服务
23+阅读 · 2021年2月28日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员