项目名称: 弹性导热仿生功能表面构建原理及减阻机制
项目编号: No.51475203
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 机械、仪表工业
项目作者: 田丽梅
作者单位: 吉林大学
项目金额: 85万元
中文摘要: 流体机械及船、舰等以流体为工作介质,流体阻力是阻碍装备工作效率提升、造成能源浪费的重要原因之一;研究表明某些温血生物,可利用其表皮弹性、体表温度对液体介质主动控制实现减阻。本研究基于上述生物耦合现象,构建并制备弹性与导热性能兼备的仿生功能表面;该表面以低模量硅橡胶为基材,以高导热性能的石墨烯等新材料作为填料复合而成;并以导热系数及弹性模量为目标函数,对导热填料的性状参数、粒径及填充量进行优化;分析填料在导热仿生功能表面面微观分布形态、结构特征与导热性能及力学性能的关系,进而建立导热模型;研究其与液体介质系统之间的应力-形变-温度耦合及转化机制,获得功能表面的热-流-固三场耦合模型;从材料弹性、温度控制流体边界层流态及运动黏性的角度出发,揭示弹性导热仿生功能表面/流体介质系统减阻机制;为仿生减阻技术的发展提供新的理论基础,为实现流体机械及船、舰艇等的增效、减阻技术提供新思路。
中文关键词: 仿生;减阻;动力粘性系数;导热性能;热-流-固耦合
英文摘要: The ships, naval vessels and fluid machinery, they work through fluid medium. Fluid resistance is one of the important reasons to cause efficiency reduced and energy wasted. Some studies shown that some warm-blooded creature active control fluid medium to realize drag reduction through the coupling effect of skin elasticity and temperature. Based on above biological coupling phenomenon, a new type of bionic functional surface which have both elastic and thermal properties is put forward and constructed. This kind of functional surface is composited by base material and filler. The low modulus silicone rubber is adopted as base material, and the high thermal conductivity material such as grapheme, nano silver as filler. The coefficient of thermal conductivity and the modulus of elasticity are as objective function, to optimize the characteristic parameters, particle size of filler and filling quantity. Filler's micro distribution form and structure in the thermal interface affect on the thermal conductivity and mechanical properties will be analysis, and its heat conduction model will be set up. The conversion mechanism among stress- deformation-temperature between functional surface and fluid medium and will be studied, the three-field coupling model of fluent-thermal-solid will be obtained. Drag reduction mechanism between thermal interface of high elastic thermal conductive bionic coupling functional surface and fluid system will be revealed from the perspective of elastic deformation to control the flow state and temperature difference in thermal interface to reduce kinematic viscosity of boundary layer. The purposes of above study are to lay a theoretical foundation for bionic drag reduction technology, provide a new idea for the efficiency enhancement and drag reduction technology for the fluid machinery, the ships and naval vessels.
英文关键词: bionics;drag reduction;dynamic viscosity coefficient;thermal conductivity;coupling among fluent-thermal-solid