项目名称: 海洋微藻为媒介的太阳能生物转化气体燃料研究

项目编号: No.41276143

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 天文学、地球科学

项目作者: 郭荣波

作者单位: 中国科学院青岛生物能源与过程研究所

项目金额: 80万元

中文摘要: 生物质能本质上是太阳能的载体和转化形式。微藻具有很高的光合效率,是一种具有高效太阳能转化效率的生物资源。微藻细胞含水量高、体积微小,造成细胞采收与干燥加工成本很高,是目前微藻制备生物柴油技术存在的难以克服的技术障碍。本项目创新性的提出了不以微藻生物质为能源利用形式而以微藻为媒介,不经微藻细胞采收干燥等环节,利用微藻培养过程固定太阳能获得微藻生物质,微藻生物质不经过脱水干燥直接进行厌氧发酵制取氢气和甲烷气体燃料,从而通过有限的低能耗步骤即可把太阳能转化为气体燃料。本项目针对海洋微藻为媒介的太阳能转化气体燃料的技术特性,通过建立微藻生长动力学模型,研究海洋微藻高密度生长机制,研究微藻生物质高效快速两步法联产氢气和甲烷的发酵机理,发展微藻生物质高效发酵的微生物群落选育技术,研究微藻培养和发酵过程中的营养盐转化转移机理,从而为以微藻为媒介的太阳能生物转化气体燃料技术发展奠定科学基础。

中文关键词: 微藻;太阳能;厌氧消化;氢气;甲烷

英文摘要: Biomass is type of carrier of solar energy. Microalgae is considered as a kind of bio-resource with high solar energy transformation efficiency because of its high photosynthesis efficiency. However, the small volume and high water content of the microalgae cell result in the high cost of the cell harvesting and dry process, this is an apparent obstacle for the development of microalgae energy industry. This project proposed a novel technology which only use the microalgae as the solar energy carrier, after the solar energy is captured by microalgae cell, the microalgae biomass then is transferred into biogas by anaerobic fermentation process, this technology avoids the high cost processes usually involved in microalgae biodiesel technology. This project will study the mechanism of microalgae high density growth, and construct the dynamic model for microalgae growth, then study the fermentation and transformation mechanism of microalalgae biomass in anaerobic fermentation process. The two step fermentation technology will be investigated for microalgae biomass. In the first step hydrogen and in the second step methane is produced. The nutrient transformation in the cycle process will be studied and nutrient recycle technology will be developed.

英文关键词: Microalgae;Solar Energy;Anaerobic Digesti;Hydrogen;Methane

成为VIP会员查看完整内容
0

相关内容

《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
5G赋能,民用引领,无人机产业迎来新变革,35页报告
专知会员服务
30+阅读 · 2022年3月20日
工业人工智能驱动的流程工业智能制造
专知会员服务
96+阅读 · 2022年3月9日
全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
专知会员服务
45+阅读 · 2021年10月10日
《6G总体愿景与潜在关键技术》白皮书,32页pdf
专知会员服务
100+阅读 · 2021年6月8日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
68+阅读 · 2021年4月15日
专知会员服务
23+阅读 · 2021年3月18日
多彩 M820 猎境者三模无线游戏鼠标开箱拆解
ZEALER订阅号
0+阅读 · 2022年1月6日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
小贴士
相关主题
相关VIP内容
《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
5G赋能,民用引领,无人机产业迎来新变革,35页报告
专知会员服务
30+阅读 · 2022年3月20日
工业人工智能驱动的流程工业智能制造
专知会员服务
96+阅读 · 2022年3月9日
全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
专知会员服务
45+阅读 · 2021年10月10日
《6G总体愿景与潜在关键技术》白皮书,32页pdf
专知会员服务
100+阅读 · 2021年6月8日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
68+阅读 · 2021年4月15日
专知会员服务
23+阅读 · 2021年3月18日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员