项目名称: 新型稠环并三噻吩类聚合物材料的合成和光伏应用

项目编号: No.51273203

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 霍利军

作者单位: 北京航空航天大学

项目金额: 80万元

中文摘要: 在近几年的聚合物光伏材料研究中,通过给-吸电子单元共聚得到的窄带隙材料,由于取得了较高的光伏效率被认为是行之有效的材料设计思路之一。不过近两年新发展出来的、通过醌式-芳香式单元交替共聚的方法制备的聚合物效率已高达7%以上。本项目将按照这种新的醌式-芳香式单元共聚得到窄带隙聚合物的新设计思路,设计、合成出一系列基于新型醌式结构的并三噻吩(DTT)的窄带隙聚合物。通过常见具有不同芳香性能的共轭单元与之共聚来探索合适的分子能级和吸收光谱。在此基础上,增加醌式结构两边的共轭桥来进一步提高共轭程度和降低位阻。同时,通过调节烷基侧链的数目和引入共轭侧链的方式,提高材料的消光系数以及空穴迁移率,以此对这种具有醌式结构的新型稠环三噻吩在高效率光伏电池中的应用进行系统性的研究。这将对提高聚合物太阳能电池转化效率和实际应用具有非常重要的理论与实践意义。

中文关键词: 并三噻吩;共轭聚合物;聚合物太阳能电池;醌式结构;空穴迁移率

英文摘要: The design and synthesis low band gap conjugated polymers are attracting more interestings owing to their potential applications in polymer solar cells (PSCs). By the method of donor-acceptor copolymerization, many low band gap polymers were made and the method has been proved to be one of successful strategies of realizing high efficiencies. However, another efficient strategy of lowing band gaps by aromatic-quinoid copolymerization had not been developed until recent two years because some higher efficiencies beyond 7% have been reported from the aromatic-quinoid copolymerization. The original research results showed that more quinoid resonance energy appeared in polymeric backbone. Following the idea of more quinoid resonance energy in backbone, a fused heteroaromatic system of dithienothiophene (DTT) unit was firstly synthesized and characterized. Considering its planar molecular structure and better conjugated structure, especially its potential stronger quinoid resonance energy comparing to the molecular structure of thieno[3,4-b]thiophene, a series common used aromatic rings will be copolymerized with the DTT units such as thiophene, dithiophene, fluorene, carbazole, benzoditiophene, benzodifuran, thienothiophene, and so on. The target of this project will focus on exploring new quinoid low band gap unit

英文关键词: dithienothiophene;conjugated polymer;polymer solar cells;quinoid structure;hole mobility

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
33+阅读 · 2021年5月7日
【CVPR2021】通道注意力的高效移动网络设计
专知会员服务
19+阅读 · 2021年4月27日
专知会员服务
22+阅读 · 2021年3月9日
专知会员服务
52+阅读 · 2020年12月28日
《2020人工智能医疗产业发展蓝皮书》发布
专知会员服务
115+阅读 · 2020年9月11日
流畅的Python 中英文版 PDF 高清电子书
专知会员服务
81+阅读 · 2020年8月2日
专知会员服务
109+阅读 · 2020年5月21日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
29+阅读 · 2020年4月6日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Age Optimal Sampling Under Unknown Delay Statistics
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
Arxiv
17+阅读 · 2022年1月11日
Arxiv
25+阅读 · 2022年1月3日
小贴士
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
33+阅读 · 2021年5月7日
【CVPR2021】通道注意力的高效移动网络设计
专知会员服务
19+阅读 · 2021年4月27日
专知会员服务
22+阅读 · 2021年3月9日
专知会员服务
52+阅读 · 2020年12月28日
《2020人工智能医疗产业发展蓝皮书》发布
专知会员服务
115+阅读 · 2020年9月11日
流畅的Python 中英文版 PDF 高清电子书
专知会员服务
81+阅读 · 2020年8月2日
专知会员服务
109+阅读 · 2020年5月21日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
29+阅读 · 2020年4月6日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员