项目名称: 基于氟化物介孔的高效钙钛矿太阳电池的设计、制备与性能研究

项目编号: No.61574129

项目类型: 面上项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 陈永生

作者单位: 郑州大学

项目金额: 16万元

中文摘要: 钙钛矿太阳电池的快速发展为解决未来能源问题带来了一线曙光。然而,对于介观结构太阳电池,由于其内部存在着庞大的介孔\吸光体界面,要进一步提高电池的转换效率,需要对界面动力学过程,以及介孔层在薄膜生长和载流子传输过程中的作用机制进行深入研究。项目拟采用TiO2致密层、CH3NH3PbI3吸光体、新型的基于低声子能量氟化物纳米颗粒的介孔层和可增强价带能级匹配的有机/无机双空穴传输层新颖设计来构筑介观太阳电池,达到改善界面接触特性、降低载流子复合、提高电池效率的目的。重点研究NaYF4和PbF2介孔层对钙钛矿吸光层生长特性和光生载流子的传输、复合过程的影响,以揭示介孔层性质对电池性能的作用规律。同时,建立二维介观太阳电池的数值模型,集中分析介孔层结构、特性对电池性能的影响,并与实验结果进行对比分析,阐明电池的光物理机制。总之,项目的实施能够为高效钙钛矿太阳电池的研发提供新的思路。

中文关键词: 钙钛矿薄膜;太阳电池;氟化物;模拟;介孔层

英文摘要: The rapid development of perovskite solar cells, an emerging low-cost photovoltaic technology, has brought a ray of hope to solve the future energy problem. However, for the further improvement in the power conversion efficiency for the mesoscopic solar cells, it is very necessary to carry out thorough understandings on the interface kinetics, and the roles of porous scaffolds in the film growth and carriers transport process, due to the presence of a huge mesoporous/absorber interface. In this project, the unique device configuration for mesoscopic solar cells consists of a dense TiO2 layer, a CH3NH3PbI3 light absorber layer, a alternative fluoride nanoparticles-based mesoporous layer with low phonon energy, and a novel design of organic/inorganic double hole transport layers for the matching of valence band energy levels, to improve the interface contact characteristics, suppress the recombination of carriers and enhance the efficiency of solar cells. And to reveal the operation mechanism of mesoporous properties on cell performance, the research is focused on the influences of NaYF4 and PbF2 mesoporous layers respectively on the growth characteristics of perovskite absorption layer, and on the transport and recombination processes of photo-generated carriers. At the same time, a two-dimensional numerical mod

英文关键词: Perovskite film;Solar cells;Fluoride;Simulation;Mesoporous layer

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
39+阅读 · 2021年5月12日
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员