项目名称: 基于问题特征的学习型群体智能优化算法及应用研究

项目编号: No.61305149

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 自动化技术、计算机技术

项目作者: 张兆军

作者单位: 江苏师范大学

项目金额: 23万元

中文摘要: 随着群体智能优化算法的研究不断深入,为处理大量复杂优化问题提供了有力的解决方案,成为人工智能的一个重要研究方向。虽然算法在模型改进、理论分析、应用拓展等方面取得了较大的进展,但是仍存在一些问题有待进一步研究,如参数设置、避免早熟收敛以及解性能评价等。本项目拟将复杂网络和机器学习等思想引入群体智能优化算法设计中,提出一种基于问题特征的学习型群体优化算法的一般框架。根据复杂网络分析抽取的待解决问题的特征信息建立一种算法参数设置的专家系统,并分析各个参数对算法性能的影响。利用机器学习中聚类分析方法分析算法运行过程中产生的大量可行解,得到待解决问题的局部信息和算法采样特征,并据此提出一种解性能评价的一般方法。在应用方面,拟将取得研究成果应用于解决卫星资源测控调度和发电商竞标策略问题。本项目的实施有望为解决工程实践问题提供一套切实可行的解决方案,同时有助于充实群体智能的理论基础,促进群体智能的发展。

中文关键词: 群体智能优化算法;解质量评价;参数设置;机器学习;

英文摘要: With the swarm intelligence optimization algorithm further studies, it provides a powerful solution for processing of a large number of complex optimization problems and has become an important research direction of AI. Although the algorithm improvement in the model, the theoretical analysis and application development has made great progress, but there are still some issues to be further studied, for example, the parameter settings, avoiding premature convergence and solution performance evaluation. The project intends to introduce the idea of complex networks and machine learning to guide swarm intelligence optimization algorithm designing. The general framework of learning type optimization algorithm based on the characteristics of the problem will be proposed in this project. Using the complex network, an expert system will be established based on feature information of the problem to be solved, and the impact of various parameters on the performance of the algorithm also will be analyzed. A large number of feasible solutions are studied by using clustering methods to get local information of the problem and sampling characteristics of the algorithm. A general solution performance evaluation method also will be introduced based on this information. In the application, the research results intend to apply to

英文关键词: Swarm intelligence optimization algorithm;Solution quality evaluation;Parameters setting;Machine Leanning;

成为VIP会员查看完整内容
0

相关内容

专知会员服务
56+阅读 · 2021年9月18日
专知会员服务
22+阅读 · 2021年7月31日
专知会员服务
122+阅读 · 2021年7月22日
专知会员服务
33+阅读 · 2021年6月18日
专知会员服务
42+阅读 · 2021年6月2日
专知会员服务
26+阅读 · 2021年4月21日
专知会员服务
138+阅读 · 2021年1月13日
专知会员服务
46+阅读 · 2020年11月13日
专知会员服务
79+阅读 · 2020年8月4日
专知会员服务
43+阅读 · 2020年7月29日
清华大学:从单体仿生到群体智能
专知
17+阅读 · 2022年2月9日
超图学习综述: 算法分类与应用分析
专知
0+阅读 · 2022年2月1日
自动化所团队揭示多尺度动态编码,助力脉冲网络实现高效强化学习
中国科学院自动化研究所
0+阅读 · 2021年12月13日
【博士论文】基于冲量的加速优化算法
专知
7+阅读 · 2021年11月29日
约束进化算法及其应用研究综述
专知
0+阅读 · 2021年4月12日
我国智能网联汽车车路协同发展路线政策及示范环境研究
无人机集群对抗研究的关键问题
无人机
56+阅读 · 2018年9月16日
机器学习(17)之集成学习原理总结
机器学习算法与Python学习
19+阅读 · 2017年9月16日
从浅层模型到深度模型:概览机器学习优化算法
机器之心
26+阅读 · 2017年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2020年4月12日
Arxiv
23+阅读 · 2018年10月1日
小贴士
相关VIP内容
专知会员服务
56+阅读 · 2021年9月18日
专知会员服务
22+阅读 · 2021年7月31日
专知会员服务
122+阅读 · 2021年7月22日
专知会员服务
33+阅读 · 2021年6月18日
专知会员服务
42+阅读 · 2021年6月2日
专知会员服务
26+阅读 · 2021年4月21日
专知会员服务
138+阅读 · 2021年1月13日
专知会员服务
46+阅读 · 2020年11月13日
专知会员服务
79+阅读 · 2020年8月4日
专知会员服务
43+阅读 · 2020年7月29日
相关资讯
清华大学:从单体仿生到群体智能
专知
17+阅读 · 2022年2月9日
超图学习综述: 算法分类与应用分析
专知
0+阅读 · 2022年2月1日
自动化所团队揭示多尺度动态编码,助力脉冲网络实现高效强化学习
中国科学院自动化研究所
0+阅读 · 2021年12月13日
【博士论文】基于冲量的加速优化算法
专知
7+阅读 · 2021年11月29日
约束进化算法及其应用研究综述
专知
0+阅读 · 2021年4月12日
我国智能网联汽车车路协同发展路线政策及示范环境研究
无人机集群对抗研究的关键问题
无人机
56+阅读 · 2018年9月16日
机器学习(17)之集成学习原理总结
机器学习算法与Python学习
19+阅读 · 2017年9月16日
从浅层模型到深度模型:概览机器学习优化算法
机器之心
26+阅读 · 2017年7月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员