项目名称: 基于云计算模型的自组织差分进化算法及其应用研究
项目编号: No.61202130
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 计算机科学学科
项目作者: 胡晓敏
作者单位: 中山大学
项目金额: 26万元
中文摘要: 传统基于串行模式运行的进化算法在求解高维大规模优化应用中的计算时间和效率问题是制约算法应用发展的重要瓶颈。结合差分进化算法在全局最优化方面的优势和云计算模型在并行分布式处理上的优势,本课题提出一种新型的基于云计算模型的自组织差分进化算法。通过差分进化算法对待优化问题的规模及适应值评价复杂性的分析,依据对算法种群所处的搜索空间的适应值曲面特性的感知,实现云计算模型下差分进化算法的并行规模与通信拓扑的自组织。通过动态统计分析种群个体分布密度和行为特征,据此确定各个并行子种群应选择的参数取值,提高基于云计算模型的差分进化算法的计算效率。本课题最终将给出一个求解高维复杂大规模优化问题的新途径:基于云计算模型下的自组织、自适应差分进化算法,提高求解问题的速度和精度。预期结果可以有效缩短进化算法的计算时间,提高解的质量,为解决实际应用中的高维大规模优化问题提供新的有效途径。
中文关键词: 差分进化算法;自组织方法;云计算;优化设计;
英文摘要: The computation time and efficiency are the bottleneck of the traditional serial evolutionary algorithms in solving high-dimensional, large-scale optimization problems. Combining the advantages of differential evolution algorithms on global optimization and the advantages of cloud computing models on parallel distributed operations, this project proposes a novel self-organized differential evolution algorithm based on cloud computing. By analyzing the domain size and the complexity for evaluating the fitness value using the differential evolution algorithm, and by perceiving the fitness surface features of the search space of the algorithm population, the proposed algorithm realizes the self-organization of the parallel size and communication topology of the differential evolution algorithm based on the cloud computing model. By the dynamic statistical analysis of the distribution density of individuals and their behavioral characteristics in a population, the appropriate parameter values are adaptively determined for every parallel subpopulation, so as to enhance the computation efficiency of the differential evolution algorithm based on the cloud computing model. This project will eventually present a new way of solving high dimensional and complex large-scale optimization problems: a cloud computing model bas
英文关键词: Differential Evolution Algorithm;Self-Organized Method;Cloud Computing;Optimization Design;