项目名称: 基于结晶固体中有机单分子的高效率量子光源实验研究

项目编号: No.11474114

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 陈学文

作者单位: 华中科技大学

项目金额: 100万元

中文摘要: 二十年来人们对固体单量子系统(如有机分子、半导体量子点、金刚石色心等)的探测、显微和操纵研究激发和促进了大范围的基础和应用研究。其中引人注目成果之一便是基于单量子系统辐射反聚束效应的单光子源的演示,作为一种核心资源推动了量子信息科学的快速发展。另外,单分子的研究催生了单分子生物物理学这一新学科领域的诞生。然而以上两方面的研究及其现实应用受到了单量子系统荧光辐射微弱、收集效率低、光子辐射不确定性高等系列因素的严重制约。近年纳米光学快速发展,人们可在纳米尺度自由控制光场,这给操控单量子系统的带来巨大新机遇。在本项目中,我们将研究基于结晶固体中单分子的高效率、带宽傅立叶受限的单光子源和双光子源,结合纳米光学概念与技术,极大增强在液氦恒温器中稳定单分子的光子辐射速率、方向性和0-0声子线的强度,从而实现按需确定的、明亮的量子光源,为量子保密通信、信息处理和光子强相互作用等研究与应用提供优质资源。

中文关键词: 量子光学;原子分子光谱学;纳米光学;量子信息;原子分子物理

英文摘要: Detection, microscopy, and spectroscopy of single solid-state emitters such as organic molecules, semiconductor quantum dots, and color centers have enabled a vast range of studies in the past two decades . One of the outstanding impacts of this research field has been the demonstration of single-photon sources based on the antibunched nature of the radiation from a single emitter, which enables the rapid development of quantum information science. Another important widespread application has been in single-molecule biophysics. Both of these lines of research are limited by the intrinsically weak, probabilistic and isotropic radiation of a single emitter. In recent years, we have witnessed tremendous development of photonic technologies, which allow free manipulation of the electromagnetic fields at the mesoscopic scale and therefore provide unprecedented opportunities for studying single quantum system at a new stage. In this project, we will experimentally and theoretically investigate high-efficiency and Fourier-Transform limited single-photon and bi-photon sources. By incorporating concepts and techniques from Nano-Optics, we plan to greatly enhance the single photon emission rate, its directionality and zero-phonon line (ZPL) of stable single molecules at the cryogenic temperature of liquid Helium. Our research in this project will lead to triggered (on-demand) and deterministic bright quantum light sources, provide high-quality essential resources for studying and implementing quantum cryptography, information processing and strongly interacting photons.

英文关键词: quantum optics;atom and molecule spectroscopy;nano optics;quantum information;atom and molecular physics

成为VIP会员查看完整内容
0

相关内容

Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
【Jon Paul Janet】机器学习化学应用,153页ppt
专知会员服务
43+阅读 · 2021年12月5日
专知会员服务
40+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
【经典书】半监督学习,524页pdf
专知会员服务
134+阅读 · 2021年8月20日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
这次遥控大脑实验成功了,却把网友们吓坏了
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
46+阅读 · 2021年10月4日
小贴士
相关主题
相关VIP内容
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
【Jon Paul Janet】机器学习化学应用,153页ppt
专知会员服务
43+阅读 · 2021年12月5日
专知会员服务
40+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
【经典书】半监督学习,524页pdf
专知会员服务
134+阅读 · 2021年8月20日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员