项目名称: 自旋轨道耦合系统中低能激发和量子纠缠的理论研究
项目编号: No.11474211
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 尤文龙
作者单位: 苏州大学
项目金额: 85万元
中文摘要: 近年来,电子强关联体系中的自旋轨道耦合因其带来众多新奇的物理现象而引起了广泛兴趣。基于我们的工作基础,本项目拟研究电子强关联体系中的新奇量子态,低能自旋轨道激发和自旋轨道纠缠。具体包括:(1)在强自旋轨道耦合下,我们拟分析蜂窝状铱化合物的新奇相和低能激发态,通过分析各相中的空穴运动,揭示该体系的准粒子和非费米液体行为。(2) 通过对材料界面边缘的调控产生新颖的物理现象和功能,我们拟设计各种非常规轨道超交换相互作用以及可能引发的新奇量子物态。我们将进一步研究锯齿状链哈密顿量的量子调控;(3)我们将研究莫特绝缘体极限下的钙钛矿结构过渡金属氧化物的低能激发。引入冯纽曼熵谱来标识低能自旋轨道激发态,与共振非弹性X射线散射谱进行比较;(4)我们将探析自旋轨道耦合体系保真率的度量及其标度行为。项目预期能在电子自旋轨道关联研究领域取得一些有特色的原创性成果。
中文关键词: 自旋轨道耦合;自旋轨道纠缠;量子相变;低能激发态;自旋液体
英文摘要: It has become increasingly appreciated in recent years that entirely new states of matter can be formed which originate from the entanglement of spin and orbital degrees of freedom. Based on our previous works, we propose to study the extoic states and low-lying spin-orbit excitations, as well as spin-orbit entanglement.The research plans include:(1) We will consider the exotic phases in iridates on a honeycomb lattice with strong spin-orbit coupling, and we will reveal the quasiparticle and non-Fermi liquid behavior therein through the study of hole motion in each phase. (2) In light of that novel physical phenomena and functions can be realized by means of quantum control on the lattice interface, we will study various unconventional orbital superexchange interaction and novel quantum state triggered by different electronic configuration. We will further carry on the Hamiltonian engineering on a zigzag chain. (3) We will investigate the low-energy excitation and spin-orbit entanglement in transition metal oxide with perovskite structure in the Mott-insulating limit. We will introduce von Neumann entropy spectrum to characterize the low-lying excited states, and compared the results with resonant inelastic X-ray scattering spectrum; (4) We will analyse the scaling of fidelity susceptibility in the spin-orbital model. The proposed project expects to further deepen our understanding of spin-orbit induced phenomena in this rapidly developing field.
英文关键词: Spin-Orbit Coupling;Spin-Orbit Entanglement;Quantum Phase Transition;Low-lying Excitation;Spin Liquid