项目名称: 基于金属纳米缝结构的可调性表面等离子体激元干涉光刻方法研究
项目编号: No.61505038
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 无线电电子学、电信技术
项目作者: 董建杰
作者单位: 国家纳米科学中心
项目金额: 21万元
中文摘要: 表面等离子体激元干涉光刻技术是一种利用表面等离子体激元的干涉产生高分辨率图形的技术。由于表面等离子体激元具有比同频率光波更短的波长,因此表面等离子体激元干涉光刻技术可以突破衍射极限产生超高分辨率的图形。这使表面等离子体激元干涉光刻技术在纳米结构和器件加工领域具有巨大的应用潜力。但是目前这种光刻技术仍然存在无法满足复杂性纳米图形加工要求的问题需要解决。本项目重点解决如何控制表面等离子体激元干涉光刻的曝光范围和如何产生多样性图形两个科学问题。采用理论与实验相结合的研究方法,深入研究金属纳米缝结构对表面等离子体激元干涉图形的产生区域和形状的调控。通过本项目的研究,期望获得曝光范围和图形形状可调、分辨率超过超衍射极限的表面等离子体激元干涉光刻方法。因此,本项目的研究具有重要的科学意义和应用价值。
中文关键词: 表面等离子体激元;光学光刻;超衍射极限光刻;干涉调控
英文摘要: The surface plasmon polariton interference lithography technique is a technique which uses the interference of surface plasmon polaritons to produce patterns with a high resolution. Since surface plasmon polaritons have a shorter wavelength than light waves of the same frequency, the surface plasmon polariton interference lithography technique can overcome the diffraction limit and produce patterns with an ultrahigh resolution, which makes it have many potential applications in fields such as the fabrication of nanostructures and nanodevices. However, at present this lithography technique can’t meet the requirement for fabricating complex patterns, which is a problem which has to be solved. This project will mainly study how to control the exposure area of the surface plasmon interference patterns and how to modify the shape of the surface plasmon interference pattern. The control of the exposure area of the surface plasmon interference patterns and the modification of the shape of the surface plasmon interference pattern with metallic nanoslit structures will be deeply studied by combining theory analysis and experiment research. The sub-diffraction-limit surface plasmon interference lithography methods with tunable exposure area and pattern shape will be obtained by performing this project. Therefore, the investigation of tunable surface plasmon polariton interference lithography methods based on metallic nanoslit structures is of great scientific and practical importance.
英文关键词: Surface plasmon polariton;Optical lithography;Sub-diffraction-limit lithography;Interference control