项目名称: 过渡金属二硫族化合物异质结界面特性与光电性质的理论研究
项目编号: No.11504015
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 司晨
作者单位: 北京航空航天大学
项目金额: 20万元
中文摘要: 范德瓦耳斯异质结是由不同二维材料堆积形成的一类新型人造材料,不同二维原子层之间的耦合效应赋予了其很多新奇的物理性质。最近,由不同二维过渡金属二硫族化合物(TMD,如MoS2, WS2, MoSe2, WSe2等)组成的范德瓦耳斯半导体异质结(TMD/TMD,如MoS2/WS2, MoS2/MoSe2等)因其在光电领域的重要应用前景吸引了广泛关注。利用第一性原理计算,结合凝聚态物理模型分析,本项目将对这类过渡金属二硫族化合物异质结的界面特性、电子结构和能级匹配展开系统的研究,力图揭示界面电子态的耦合效应,阐释TMD层的本征掺杂对异质结电子结构和能级匹配的影响规律及其微观作用机制,以期深入理解界面处电荷的产生、分离、复合等光电物理过程。在此基础上,本项目拟提出有效的界面调控机制,通过合适的界面原子或分子插层,实现对异质结电子结构和能级匹配有目的性地调控,从而优化其光电性质。
中文关键词: 范德瓦耳斯异质结;电子结构;能级匹配;界面调控;第一性原理计算
英文摘要: Van der Waals heterostructures formed by vertical stacking of different two-dimensional (2D) crystals, have emerged as a new class of artificial materials, where the quantum coupling between stacked 2D atomic layers results in many unusual properties. Recently, semiconducting van der Waals heterostructures composed of transition metal dichalcogenides (TMDs: MoS2, WS2, MoSe2, WSe2), such as MoS2/WS2, MoS2/MoSe2, in particular have attracted considerable attention owing to their promising optoelectronic applications. In this project, using first-principles calculations combined with the effective physical models, we will systematically investigate the interfacial properties, electronic structures and energy level alignments of the semiconducting TMD/TMD heterostructures. The coupling of interlayer electronic states will be clarified, and the effects of the intrinsic doping of TMD layers on the electronic structures and energy level alignments of the TMD/TMD heterostructures will also be revealed. We hope to give a deep understanding of the optoeletronic progress, i.e., charge generation, separation and recombination, which take place at the interfaces of heterostructures. Finally, we will propose effective intercalations of atoms or molecules at the interfaces, to control the interfacial electronic structures and energy level alignments of heterostructures and then to optimize their optoelectronic properties.
英文关键词: van der Waals heterostructures;electronic structure;energy level alignment;interface engineering;first-principles calculations