项目名称: 吸附/过滤耦合等离子体催化脱除废气中PAHs的机理研究

项目编号: No.51206146

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 工程热物理与能源利用学科

项目作者: 吴祖良

作者单位: 浙江工商大学

项目金额: 25万元

中文摘要: 采用吸附/过滤耦合等离子体催化脱除废气中PAHs的新方法,构建不锈钢粉末烧结层过滤-介质阻挡等离子体氧化-金属氧化物催化氧化以及硅藻土吸附-介质阻挡等离子体氧化-金属氧化物催化氧化两个反应体系,对废气中的气/固相PAHs以及气相等离子体反应过程中生成的固相产物实现高效吸附和捕集,最终在等离子体催化的协同作用下完成深度氧化脱除。本课题研究介质阻挡放电对金属氧化物/硅藻土吸附氧化性能的影响机制,PAHs降解过程中不锈钢粉末烧结层的过滤机制,以及PAHs在吸附-过滤-等离子体催化复杂体系下的氧化机理,为废气中PAHs的高效无害化控制提供重要的理论依据,同时为解决燃煤过程复合污染物控制、机动车尾气净化甚至室内空气净化等环境问题提供理想的技术途径。

中文关键词: 介质阻挡;催化;过滤;萘;降解

英文摘要: The new method of PAHs decomposition from exhausted gas,absorption/filtration coupling plasma catalysis, is put forward in this research. Two reactive systems are formed, filtration of stainless powder sintering layer-plasma oxidation of DBD-catalysis oxidation of metallic oxide and absorption of diatomite-plasma oxidation of DBD-catalysis oxidation of metallic oxide. Gaseous phase PAHs, solid phase PAHs and solid phase product during gaseous phase plasma reaction are absorpted and filtrated through this method. Finally,they are conversed into harmless materials under the coupling function of palsma catalysis. These studies will be carried out in order to obtain the principle of the highly-efficient and harmless control of PAHs, including the effect of DBD on the absorption and oxidation characteristics of metallic oxide/diatomic, the filtration mechanism of stainless powder sintering layer, the PAHs oxidative mechanism under the complicated reaction system of absorption-filtration-plasma catalysis.This research will provide perfect technology approach in order to solve the multiplex pollutants control, automotive pollution control and room air purification.

英文关键词: DBD;catalysis;filtration;naphthalene;decomposition

成为VIP会员查看完整内容
0

相关内容

全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
《人工智能安全测评白皮书》,99页pdf
专知会员服务
355+阅读 · 2022年2月26日
零碳智慧园区白皮书(2022),66页pdf
专知会员服务
181+阅读 · 2022年2月17日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
48+阅读 · 2021年10月3日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
面向司法案件的案情知识图谱自动构建
专知会员服务
121+阅读 · 2020年4月17日
1000万年轻人在线围观“捡破烂”
创业邦杂志
0+阅读 · 2022年3月27日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Chinese Idiom Paraphrasing
Arxiv
0+阅读 · 2022年4月15日
小贴士
相关主题
相关VIP内容
全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
《人工智能安全测评白皮书》,99页pdf
专知会员服务
355+阅读 · 2022年2月26日
零碳智慧园区白皮书(2022),66页pdf
专知会员服务
181+阅读 · 2022年2月17日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
48+阅读 · 2021年10月3日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
面向司法案件的案情知识图谱自动构建
专知会员服务
121+阅读 · 2020年4月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员